Refine Your Search

Topic

Search Results

Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Technical Paper

The Particle Emission Characteristics of a Light Duty Diesel Engine by Using Different Pilot Injections

2010-10-05
2010-01-1959
Pilot injection has been used widely in diesel engines for its NOx and noise reducing characteristics. In this paper, its impacts to the particle emissions were studied using a light-duty common-rail Euro 4 diesel engine with different pilot injection strategies. Three steady-state engine modes were selected from the EU legislative diesel engine test cycle to represent low, medium and high engine speeds and loads. The quantities and injection timings of the pilot injection strategies were then varied. The particle number concentration and size distributions were investigated along with the smoke and regulated gas emissions such as the NOx trade-off. These results indicate how a pilot injection alongside a main injection can increase the particle size compared to a single main injection event. Furthermore, the split injection was closely related to the engine mode.
Technical Paper

Study on an Electronically Controlled Common-Rail Injection System for Liquefied Alternative Fuels

2005-05-11
2005-01-2085
Liquefied alternative fuels offer great potential benefits in reducing exhaust emissions and improving fuel economy of automotive engines. In order to achieve the best performance of the engine running with such fuels, it is critical to have an appropriate fuel system. In the present work, a new electronically controlled common-rail injection system has been specially designed and tested for the direct injection of liquefied alternative fuels, since a conventional pump-line-injector injection system in the conventional diesel engine was not suitable for the purpose. Experimental work has been carried out to examine and improve matching of the fuel injection system on a new fuel injection pump test bench. The preliminary engine bench test has demonstrated that this arrangement meets the requirement for the operating characteristics of a fuel injection system in a direct injection diesel engine operating with dimethyl ether (DME).
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine

2012-04-16
2012-01-0403
It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP.
Technical Paper

Phenomenology of EGR in a Light Duty Diesel Engine Fuelled with Hydrogenated Vegetable Oil (HVO), Used Vegetable Oil Methyl Ester (UVOME) and Their Blends

2013-04-08
2013-01-1688
HVO contains paraffin only and UVOME is methyl ester with long chain alkyl while mineral diesel is complex compound and contains lots of aromatic and Naphthenic. This paper compares the effects of EGR on the two different types of biodiesels blends compared to diesel. The combustion performance and emissions of biodiesel blends of UVOME and HVO were investigated in a turbocharged direct injection V6 diesel engine with EGR swept from 0% to the calibration setting for diesel. The EGR sweep tests with increment of 5% were conducted at the engine speed of 1500 RPM for the load of between 72 Nm to 143 Nm, using sulfur-free diesel blended with UVOME and HVO at 30% and 60% by volume respectively. As the EGR rate was increased, the brake specific fuel consumption (BSFC) for each fuel was reduced at lower load but increased at higher load. The BSFC of mineral diesel was lower than UVOME blends and similar to the HVO blends.
Technical Paper

Particulate Emissions from a Gasoline Homogeneous Charge Compression Ignition Engine

2007-04-16
2007-01-0209
Particulate Emissions from Homogeneous Charge Compression Ignition (HCCI) combustion are routinely assumed to be negligible. It is shown here that this is not the case when HCCI combustion is implemented in a direct injection gasoline engine. The conditions needed to sustain HCCI operation were realized using the negative valve overlap method for trapping high levels of residual exhaust gases in the cylinder. Measurements of emitted particle number concentration and electrical mobility diameter were made with a Cambustion DMS500 over the HCCI operating range possible with this hardware. Emissions of oxides of nitrogen, carbon monoxide and unburned hydrocarbons were also measured. These data are presented and compared with similar measurements made under conventional spark ignition (SI) operation in the same engine. Under both SI and HCCI operation, a significant accumulation mode was detected with particle equivalent diameters between 80 and 100 nm.
Technical Paper

Operating Characteristics of a Homogeneous Charge Compression Ignition Engine with Cam Profile Switching - Simulation Study

2003-05-19
2003-01-1859
A single zone combustion model based on a chemical kinetic solver has been combined with a one-dimension thermo/gas dynamic engine simulation code to study the operating characteristics of a V6 engine in which Homogeneous Charge Compression Ignition (HCCI) operation (also referred to as ‘Controlled Auto-ignition” CAI) is enabled by a cam profile switching (CPS) system with negative valve overlap. An operational window within which HCCI combustion is possible has been identified and the limit of HCCI operating region for varied valve lift possibilities is explored. The mechanisms and potential fuel economy improvements within the HCCI envelope are studied and modelled results compared against data from similar engines. It is shown that for the best fuel economy the valve timing strategy needs to be selected very carefully, despite the engine's capability to operate at a range of valve timing combinations.
Journal Article

Low Ambient Temperature Effects on a Modern Turbocharged Diesel engine running in a Driving Cycle

2014-10-13
2014-01-2713
Engine transient operation has attracted a lot of attention from researchers due to its high frequency of occurrence during daily vehicle operation. More emissions are expected compared to steady state operating conditions as a result of the turbo-lag problem. Ambient temperature has significant influences on engine transients especially at engine start. The effects of ambient temperature on engine-out emissions under the New European Driving Cycle (NEDC) are investigated in this study. The transient engine scenarios were carried out on a modern 3.0 L, V6 turbocharged common rail diesel engine fuelled with winter diesel in a cold cell within the different ambient temperature ranging between +20 °C and −7 °C. The engine with fuel, coolant, combustion air and lubricating oil were soaked and maintained at the desired test temperatures during the transient scenarios.
Technical Paper

Investigation on the Performance of Diesel Oxidation Catalyst during Cold Start at L ow Temperature Conditions

2014-10-13
2014-01-2712
Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC). The results show that conversion efficiency of NOx was higher during acceleration period at −7°C start than the case of 20°C start.
Journal Article

Investigation into Light Duty Dieseline Fuelled Partially-Premixed Compression Ignition Engine

2011-04-12
2011-01-1411
Conventional diesel-fuelled Partially Premixed Compression Ignition (PPCI) engines have been investigated by many researchers previously. However, the ease of ignition and difficulty of vaporization of diesel fuel make it imperfect for PPCI combustion. In this study, dieseline (blending of diesel and gasoline) was looked into as the Partially Premixed Compression Ignition fuel for its combination of two fuel properties, ignition-delay-increasing characteristics and higher volatility, which make it more suitable for PPCI combustion compared to neat diesel. A series of tests were carried out on a Euro IV light-duty common-rail diesel engine, and different engine modes, from low speed/load to middle speed/load were all tested, under which fuel blend ratios, EGR rates, injection timings and quantities were varied. The emissions, fuel consumption and combustion stability of this dieseline-fuelled PPCI combustion were all investigated.
Technical Paper

Influence of Coolant Temperature on Cold Start Performance of Diesel Passenger Car in Cold Environment

2016-02-01
2016-28-0142
Diesel engines are the versatile power source and is widely used in passenger car and commercial vehicle applications. Environmental temperature conditions, fuel quality, fuel injection strategies and lubricant have influence on cold start performance of the diesel engines. Strategies to overcome the cold start problem at very low ambient temperature include preheating of intake air, coolant, cylinder block. The present research work investigates the effect of coolant temperatures on passenger car diesel engine’s performance and exhaust emission characteristics during the cold start at cold ambient temperature conditions. The engine is soaked in the -7°C environment for 6 hours. The engine coolant is preheated to the desired coolant temperatures of 10 and 20°C by an external heater and the start ability tests were performed.
Technical Paper

In-Cylinder Optical Study on Combustion of DMF and DMF Fuel Blends

2012-04-16
2012-01-1235
The bio-fuel, 2,5 - dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. However, little is known about the flame behavior in an optical engine. In this paper, high speed imaging (with intensifier) was used during the combustion of DMF and its blends with gasoline and ethanol (D50, D85, E50D50 and E85D15) in an SI optical engine. The flame images from the combustion of each fuel were analyzed at two engine loads: 3bar and 4bar IMEP. For DMF, D50 and E50D50, two modes were compared: DI and PFI. The average flame shapes (in 2D) and the average flame speeds were calculated and combined with mass fraction burned (MFB) data. The results show that when using DMF, the rate of flame growth development and flame speed is higher than when using gasoline. The differences in flame speed between DMF and gasoline is about 10% to 14% at low IMEP.
Technical Paper

Improving Cold Start and Transient Performance of Automotive Diesel Engine at Low Ambient Temperatures

2016-04-05
2016-01-0826
Ambient temperature has significant impact on engine start ability and cold start emissions from diesel engines. These cold start emissions are accounted for substantial amount of the overall regulatory driving cycle emissions like NEDC or FTP. It is likely to implement the low temperature emissions tests for diesel vehicles, which is currently applicable only for gasoline vehicles. This paper investigates the potential of the intake heating strategy on reducing the driving cycle emissions from the latest generation of turbocharged common rail direct injection diesel engines at low ambient temperature conditions. For this investigation an air heater was installed upstream of the intake manifold and New European Driving Cycle (NEDC) tests were conducted at -7°C ambient temperature conditions for the different intake air temperatures. Intake air heating reduced the cranking time and improved the fuel economy at low ambient temperatures.
Technical Paper

Impact of Cold Ambient Conditions on Cold Start and Idle Emissions from Diesel Engines

2014-10-13
2014-01-2715
The cold start performance of a diesel engine has been receiving more attention as the European Commission emission regulations directed to include cold start emissions in the legislative emission driving cycles. The cold start performance of diesel engines is influenced by the ambient temperature conditions, engine design, fuel, lubricant and engine operating conditions. The present research work investigates the effect of cold ambient conditions on the diesel engine's performance and the exhaust emission (gaseous and particulate emissions) characteristics during the cold start and followed by idle. The engine startability and idling tests were carried out on the latest generation of diesel engine in a cold cell at various ambient temperatures ranging between +20°C and −20°C. Higher fuel consumption and peak speed were observed at very cold ambient compared to those at normal ambient during the cold start.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Technical Paper

Experimental Study of Multiple Premixed Compression Ignition Engine Fueled with Heavy Naphtha for High Efficiency and Low Emissions

2014-10-13
2014-01-2678
A study of Multiple Premixed Compression Ignition (MPCI) with heavy naphtha is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the net indicated mean effective pressure (IMEP) from 0.5MPa to 0.9MPa. Commercial diesel is also tested with the single injection for reference. The combustion and emissions characteristics of the heavy naphtha are investigated by sweeping the first (−200 ∼ −20 deg ATDC) and the second injection timing (−5 ∼ 15 deg ATDC) with an injection split ratio of 50/50. The results show that compared with diesel combustion, the naphtha MPCI can reduce NOx, soot emissions and particle number simultaneously while maintaining or achieving even higher indicated thermal efficiency. A low pressure rise rate can be achieved due to the two-stage combustion character of the MPCI mode but with the penalty of high HC and CO emissions, especially at 0.5MPa IMEP.
Technical Paper

Experimental Study of Effect of Nozzle Diameter on Near-Field Spray Behavior of Diesel Sprays in Non-Evaporating Conditions

2014-04-01
2014-01-1405
The near-field diesel spray process in diesel engines is the intermediate one that connects the in-nozzle flow with far field spray process and high-speed imaging techniques with high-quality temporal and spatial resolution are required in order to record this short process (< 300 μs). In this study, a high-speed charge-coupled-device (CCD) camera with the speed of up to 1,000,000 fps was used to study the near-field spray process for a diesel injector with different nozzle diameters. The tests were carried out in a constant volume vessel over a range of injection pressure and ambient pressure in non-evaporating conditions. The observed zone of the spray was where penetration length is less than 18 mm. The development of spray penetration length against time after start of injection (ASOI) was used to evaluate the spray process. The significant difference on spray penetration length development is found when the nozzle diameter varied.
Technical Paper

Effect of Fuel Temperature on Performance and Emissions of a Common Rail Diesel Engine Operating with Rapeseed Methyl Ester (RME)

2009-06-15
2009-01-1896
The paper presents analysis of performance and emission characteristics of a common rail diesel engine operating with RME, with and without EGR. In both cases, the RME fuel was pre-heated in a heat exchanger to control its temperature before being pumped to the common rail. The studied parameters include the in-cylinder pressure history, rate of heat release, mass fraction burned, and exhaust emissions. The results show that when the fuel temperature increases and the engine is operated without EGR, the brake specific fuel consumption (bsfc) decreases, engine efficiency increases and NOx emission slightly decreases. However, when EGR is used while fuel temperature is increased, the bsfc and engine efficiency is independent of fuel temperature while NOx slightly increases.
Technical Paper

Combustion and Emission Characteristics of a PPCI Engine Fuelled with Dieseline

2012-04-16
2012-01-1138
In this paper blends of diesel and gasoline (dieseline) fuelled Partially Premixed Compression Ignition (PPCI) combustion and the comparison to conventional diesel combustion is investigated. The tests are carried out using a light duty four cylinder Euro IV diesel engine. The engine condition is maintained at 1800 rpm, 52 Nm (equivalent IMEP around 4.3 bar). Different injection timings and different amounts of EGR are used to achieve the PPCI combustion. The results show that compared to the conventional diesel combustion, the smoke and NOx emissions can be reduced by more than 95% simultaneously with dieseline fuelled PPCI combustion. The particle number total concentration can be reduced by 90% as well as the mean diameter (from 54 nm for conventional diesel to 16 nm for G50 fuelled PPCI). The penalty is a slightly increased noise level and lower indicated efficiency, which is decreased from 40% to 38.5%.
X