Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Yaw/Roll Stability Modeling and Control of HeavyTractor-SemiTrailer

2007-08-05
2007-01-3574
This paper sets up a simplified dynamic model for simulating the yaw/roll stability of heavy tractor-semitrailer using Matlab/Simulink. A linear quadratic regulator (LQR) based on partial-state feedback controller is used to optimize the roll stability of the vehicle. The control objective for optimizing roll stability is to be reducing the lateral load transfer rate while keeping the suspension angle less than the maximum allowable angle. The simulation result shows that the LQR controller is effective in the active roll stability control of the heavy tractor-semitrailer.
Technical Paper

Vehicle Mass Estimation for Heavy Duty Vehicle

2015-09-29
2015-01-2742
Aiming at estimating the vehicle mass and the position of center of gravity, an on-line two-stage estimator, based on the recursive least square method, is proposed for buses in this paper. Accurate information of the center of gravity position is crucial to vehicle control, especially for buses whose center of gravity position can be varied substantially because of the payload onboard. Considering that the buses start and stop frequently, the first stage of the estimator determines the bus total mass during acceleration, and the second stage utilizes the recursive least-square methods to estimate the position of the center of gravity during braking. The proposed estimator can be validated by the co-simulation with MATLAB/Simulink and TruckSim software, simulation results exhibit good convergence and stability, so the center of gravity position can be estimated through the proposed method in a certain accuracy range.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

2013-04-08
2013-01-0413
Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
Technical Paper

Variable Steering Ratio Design for Vehicle Steer-by-Wire System with Joystick

2016-04-05
2016-01-0455
Steering-by-wire(SBW) system makes the vehicle not constrained by the steering wheel control. Joystick, button and touch screen can all be used for automobile steering control. Using joystick to achieve steering operations has its unique advantages and many problems which are needed to be resolved at the same time. This paper firstly introduced the components of traditional steering wheel steer-by-wire system, then came up with the difference between joystick steer-by-wire system and traditional steer-by-wire system about transmission ratio, transmission ratio control strategy of joystick steer-by-wire system is proposed at the same time. At last, this paper studied driver’s busy degree when the vehicle running with a big turning radius at low speed and the effect of different angle transmission ratio on vehicle handing stability when the vehicle running at intermediate speed.
Technical Paper

Road Feel Modeling and Return Control Strategy for Steer-by-Wire Systems

2024-04-09
2024-01-2316
The steer-by-wire (SBW) system, an integral component of the drive-by-wire chassis responsible for controlling the lateral motion of a vehicle, plays a pivotal role in enhancing vehicle safety. However, it poses a unique challenge concerning steering wheel return control, primarily due to its fundamental characteristic of severing the mechanical connection between the steering wheel and the turning wheel. This disconnect results in the inability to directly transmit the self-aligning torque to the steering wheel, giving rise to complications in ensuring a seamless return process. In order to realize precise control of steering wheel return, solving the problem of insufficient low-speed return and high-speed return overshoot of the steering wheel of the SBW system, this paper proposes a steering wheel active return control strategy for SBW system based on the backstepping control method.
Technical Paper

Research on the Dynamic Integration Control for Distributed-Traction Electric Vehicle with Four-Wheel-Distributed Steering System

2018-04-03
2018-01-0814
With rapid development of the automobile industry and the growing maturity of the automotive electronic technologies, the distributed-traction electric vehicle with four-wheel-distributed steering/braking/traction systems is regarded as an important development direction. With its unique chassis structure, it is the ideal benchmark platform used to evaluate active safety systems. The distributed-traction electric vehicle with four-wheel-distributed steering system is essentially full drive-by-wire vehicle. With its flexible chassis layout and high control degrees-of-freedom, the full drive-by-wire electric vehicle acted as a kind of redundant system is an ideal platform for the research of integrated control. In this treatise, the longitudinal dynamics of the electric vehicle as well as its lateral and yaw motions are controlled simultaneously.
Technical Paper

Research on an AKF Estimator of the Gravity Centre and States of Commercial Vehicles

2013-11-27
2013-01-2818
The commercial vehicle is widely used in the overland transport. A prediction is given on the 9th annual China automotive industry forum that the number of the global commercial vehicles will reach eight million by the year of 2016. However, since the distance between its gravity centre and the ground is larger than that of the passenger vehicle, considering its comparatively short wheelbase, the rollover accident, which is fatal to the drivers and always makes enormous loss of merchandises, easily occurs in the case of commercial vehicles. As the number of the commercial vehicle is increasing fast, the accidents will occur more frequently, the losses will be increasingly enormous. To solve the problem, many researches about rollover early warning systems have been done. In most cases, it is assumed that the references of the vehicle are given.
Technical Paper

Research on Steering Performance of Steer-By- Wire Vehicle

2018-04-03
2018-01-0823
With the popularity of electrification and driver assistance systems on vehicle dynamics and controls, the steering performance of the vehicle put forward higher requirements. Thus, the steer-by-wire technology is becoming particularly important. Through specific control algorithm, the steer-by-wire system electronic control unit can receive signals from other sensors on the vehicle, realize the personalized vehicle dynamics control on the basis of understanding the driver’s intention, and grasp the vehicle movement state. At the same time, to make these driver assistance systems better cooperate with human drivers, reduce system frequent false warning, full consideration of mutual adaptation for the systems and the driver’s characteristics is critical. This paper focuses on the steering performance of steer-by-wire vehicle. Feature parameters are obtained from the virtual turning experiment designed on the driving simulator experimental platform.
Technical Paper

Research on Control Algorithm of Active Steering Control Based on the Driver Intention

2019-11-04
2019-01-5064
Active steering technology can improve the operability of the driver by the involvement to the steering system. Driver is the major controller of the vehicle Therefore, the involvement of advanced technologies including the active steering technology shouldn’t interfere with the intention of the driver, and the driver should still have great control of the vehicle. The aim of this paper is to solve the problem of the driver’s control when the active steering system works to improve the flexibility of the low speed and the stability of the high speed, and the active steering model based on the driver’s steering intention is established. Through the CarSim simulation software, this paper adopts 9 parameters related to the vehicle steering of the DLC (Double Line Change). And PCA (Principal Component Analysis) algorithm, a tool of statistical analysis, is applied to select 4 parameters which can stand for the DLC from the 9 parameters, which makes the data processing easier.
Technical Paper

Research On Simulation And Control Of Differential Braking Stability Of Tractor Semi-trailer

2015-09-29
2015-01-2842
Heavy vehicles have the characteristics of with high center of gravity position, large weight and volume, wheelbase is too narrow relative to the body height and so on, so that they always prone to rollover. In response to the above heavy security problems of heavy vehicle in running process, this paper mainly analyzes roll stability and yaw stability mechanism of heavy vehicles and studies the influence of vehicle parameters on stability by establishing the vehicle dynamics model. At the same time, this paper focuses on heavy vehicles stability control methods based on simulation and differential braking technology. At last, verify the effect of heavy vehicle stability control by computer simulation. The results shows that self-developed stability control algorithm can control vehicle stability effectively, so that the heavy vehicles instability can be avoided, the vehicle driving safety and braking stability are improved.
Technical Paper

Hydraulic Character Modeling and Vehicle Stability Control Algorithm for EHB System of Passenger Car

2016-04-05
2016-01-0454
As a new braking system, EHB can significantly improve the braking performance and vehicle handling and stability. In this paper the structure of high-speed on-off valve and the valve core principle are discussed, the paper also analysis the response of the valve core under different modulation frequency, duty cycle and the change of wheel cylinder pressure. Set a proper modulation frequency to make sure that electromagnetic valve can be worked in a greater linear range.
Technical Paper

Coordinated Control of Trajectory Tracking and Yaw Stability of a Hub-Motor-Driven Vehicle based on Four-Wheel-Steering

2024-04-09
2024-01-2767
In order to improve the trajectory tracking accuracy and yaw stability of vehicles under extreme conditions such as high speed and low adhesion, a coordinated control method of trajectory tracking and yaw stability is proposed based on four-wheel-independent-driving vehicles with four-wheel-steering. The hierarchical structure includes the trajectory tracking control layer, the lateral stability control decision layer, and the four-wheel angle and torque distribution layer. Firstly, the upper layer establishes a three-degree-of-freedom vehicle dynamics model as the controller prediction model, the front wheel steering controller is designed to realize the lateral path tracking based on adaptive model predictive control algorithm and the longitudinal speed controller is designed to realize the longitudinal speed tracking based on PID control algorithm.
Journal Article

Comparison of Active Front Wheel Steering and Differential Braking for Yaw/Roll Stability Enhancement of a Coach

2018-04-03
2018-01-0820
Both active front wheel steering (AFS) and differential braking control (DBC) can improve the vehicle handling and stability. In this article, an AFS strategy and a DBC strategy are proposed and compared. The strategies are as follows: A yaw instability judging module and a rollover instability judging module are put forward to determine whether the coach is in a linear state and whether the additional torque/angle module should be actuated. The additional torque module based on linear quadratic regulator (LQR) and the additional steering wheel angle module based on adaptive proportion integral differential (PID) fuzzy controller are designed to make the actual yaw rate and sideslip angle track the reference yaw rate and sideslip angle. Under some typical driving conditions such as sinusoidal, J-turning, crosswind, and straight-line brake maneuver on the μ-split road, simulation tests are carried out for the coach with no control, DBC strategy, and AFS control, respectively.
Technical Paper

Braking Control Strategy Based on Electronically Controlled Braking System and Intelligent Network Technology

2019-11-04
2019-01-5038
In order to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers, a braking control strategy based on Electronically Controlled Braking System (EBS) and intelligent network technology under non-emergency braking conditions is proposed. The controller utilizes the intelligent network technology’s characteristics of the workshop communication to obtain the driving environment information of the current vehicle firstly, and then calculate the optimal braking deceleration of the vehicle based on optimal control method. The strategy will distribute the braking force according to the ideal braking force distribution condition based on the EBS according to the braking deceleration; the braking force will be converted to braking pressure according to brake characteristics. Computer co-simulations of the proposed strategy are performed, the strategy is verified under different initial speeds.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Feasible Driver-Vehicle Shared Steering Control Actuation Architecture Based on Differential Steering

2022-12-22
2022-01-7080
To address the current situation of the limited driver-vehicle cooperative steering actuation structure, this paper proposes a feasible driver-vehicle shared steering control actuation architecture based on the differential steering. Firstly, a shared steering execution architecture is established, which contains traditional steering system controlled by human driver and differential steering system acting as the automatic execution system. In this paper, a specific driver-vehicle shared control architecture is established with the front-wheel hub motor-based differential steering system and a single-view angle based human driver model. Then, an upper-level sliding mode controller for path tracking is developed and implemented as the automatic steering system, and the driver-vehicle shared control is achieved by the proposed non-cooperative game model.
Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
X