Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Research of Tire Mechanics at Lower-Speed for Interactive Developing

2015-03-30
2015-01-0081
With the development of computer and vehicle research to high frequency, the driving simulator plays an important role on vehicle research and pre-development. The driving simulator have already been used for research about human factors, advanced active system (ABS, ESP et al), the vehicle dynamics and intelligent transportation systems (ITS) et al. The crucial requirement for a driving simulator is that it should have realistic behavior. The realistic behavior base on high-fidelity dynamics models especially tire model. “Tire/road” model is of special importance model for its influence on vehicle performances. The forces for accelerating, braking and steering are all came from tire road contact. The simulator simulation faces all possible driving scenes as driving in the real word, like parking on the hill, stop and start again, sharp steering and sharp braking et al.
Technical Paper

The Quasi-Instantaneous Engine Output Torque Model Based on Indicator Diagram

2014-04-01
2014-01-1083
High-quality dynamics model is one of the trends of vehicle dynamics model research and development. The engine generates high frequency excitation during operation, which may cause dynamic response in full vehicle. However, the widely-used internal-combustion engine model in vehicle dynamics simulation is steady-state model, which can't describe the fluctuation of engine drive torque along with the crankshaft angle. Consequently, this article concentrates on the modeling of instantaneous engine drive torque in order to improve the dynamic performance of the vehicle model. The paper has built the quasi-instantaneous engine model based on indicator diagram. To satisfy the requirement of real-time simulation, dynamically equivalent piston-connecting rod model is built and fast interpolation algorithm is researched. The linkage was simplified to spring and damper, and decoupled the piston translation and the crank rotation movements.
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

2000-03-06
2000-01-0694
A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
Technical Paper

A Driver Direction Control Model and its Application in the Simulation of Driver-Vehicle-Road Closed-Loop System

2000-06-06
2000-01-2184
The research of driver behavior characteristics has been a focus of vehicle handling and stability performance. With the driver preview effort, many different driver preview models of direction control have been proposed and the simulations of driver-vehicle-road closed-loop system made. But in the simulation, most of the conventional models have the same precondition that the road was simply described as a pre-given preview course. How to simulate the driver dynamically deciding vehicle preview course based on the real road circumstance is the key to the further research of the driver model. In this paper, a new driver direction control model is established, which is called the Optimal Preview Lateral Acceleration (OPLA) Model and divided into three sub-models: driver’s information identification model, driver’s fuzzy decision model of vehicle preview course and driver’s performance first-order correction model.
X