Refine Your Search

Search Results

Technical Paper

The Combustion and Emission Characteristics of Ethanol on a Port Fuel Injection HCCI Engine

2006-04-03
2006-01-0631
With the application of valve timing strategy to inlet and exhaust valves, Homogeneous Charge Compression Ignition (HCCI) combustion was achieved by varying the amount of trapped residuals through negative valve overlap on a Ricardo Hydra four-stroke port fuel injection engine fueled with ethanol. The effect of ethanol on HCCI combustion and emission characteristics at different air-fuel ratios, speeds and valve timings was investigated. The results indicate that HCCI ethanol combustion can be achieved through changing inlet and exhaust valve timings. HCCI ethanol combustion range can be expanded to high speeds and lean burn mixture. Meanwhile, the factors influencing ignition timing and combustion duration are valve timing, lambda and speeds. Moreover, NOx emissions are extremely low under HCCI combustion. The emissions-speed and emissions-lambda relationships are obtained and analyzed.
Technical Paper

Synergy between Boost and Valve Timings in a Highly Boosted Direct Injection Gasoline Engine Operating with Miller Cycle

2015-04-14
2015-01-1262
Gasoline engine downsizing has become a popular and effective approach to reduce CO2 emissions from passenger cars. This is typically achieved in the form of a boosted direct injection gasoline engine, which are typically equipped with variable valve timing (VVT) devices on the intake and/or exhaust valves. This paper describes the synergies between valve timings and boost based on experimental investigations in a single cylinder gasoline direct injection spark ignited (DISI) engine with variable cam phasing on both the intake and exhaust cams. Two cam profiles have been tested to realize Miller cycle and compared with the standard camshaft. One cam features a long opening duration and standard valve lift for Late Intake Valve Closing (LIVC) and the other cam has a short opening duration and low valve lift for Early Intake Valve Closing (EIVC).
Technical Paper

Study of SI-HCCI-SI Transition on a Port Fuel Injection Engine Equipped with 4VVAS

2007-04-16
2007-01-0199
A strategy to actualize the dual-mode (SI mode and HCCI mode) operation of gasoline engine was investigated. The 4VVAS (4 variable valve actuating system), capable of independently controlling the intake and exhaust valve lifts and timings, was incorporated into a specially designed cylinder head for a single cylinder research engine and a 4VVAS-HCCI gasoline engine test bench was established. The experimental research was carried out to study the dynamic control strategies for transitions between HCCI and SI modes on the HCCI operating boundaries. Results show that equipped with the 4VVAS cylinder head, the engine can be operated in HCCI or SI mode to meet the demands of different operating conditions. 4VVAS enables the rapid and effective control over the in-cylinder residual gas, and therefore dynamic transitions between HCCI and SI can be stably achieved. It is easier to achieve transition from HCCI to SI than reversely due to the influence of thermo-inertia.
Technical Paper

Study of Exhaust Re-Breathing Application on a DI SI Engine at Partial Load Operation

2018-09-03
2018-36-0129
Using Exhaust Gas Recycling (EGR) on internal combustion engines enables the reduction of emissions with a low or even no cost to the engine efficiency at part-load operation. The charge dilution with EGR can even increase the engine efficiency due to de-throttling and reduction of part load pumping losses. This experimental study proposed the use of late exhaust valve closure (LEVC) to achieve internal EGR (increased residual gas trapping). A naturally aspirated single cylinder direct injection spark ignition engine equipped with four electro-hydraulic actuated valves that enabled full valve timing and lift variation. Eight levels of positive valve overlap (PVO) with LEVC were used at the constant load of 6.0 bar IMEP and the speed of 1500 rpm. The results have shown that later exhaust valve closure (EVC) required greater intake pressures to maintain the engine load due to the higher burned gases content. Hence, lower pumping losses and thus higher indicated efficiency were obtained.
Technical Paper

Studies of the Control of In-cylinder Inhomogeneities in a 4VVAS Gasoline Engine

2008-04-14
2008-01-0052
In this research, numerical simulation using Star-CD is performed to investigate the mixing process of a single-cylinder experimental gasoline engine equipped with 4VVAS (4 Variable Valve System). Different engine operating conditions are studied with respect to valve parameters, including EVC (Exhaust Valve Closing), IVO (Intake Valve Opening), and IVL (Intake Valve Lift). The definitions of RGF (Residual Gas Fraction)/temperature statistical distribution and inhomogeneity are proposed and quantified, on which the influences of the aforementioned valve parameters are analyzed. Results reveal that, the distribution of in-cylinder residuals varies with valve parameter combinations. Intake valve timing has a greater effect on the in-cylinder distribution and inhomogeneity of residuals than intake valve lift. Earlier IVO leads to lower RGF inhomogeneity around TDC.
Technical Paper

Parametric Study on CAI Combustion in a GDI Engine with an Air-Assisted Injector

2007-04-16
2007-01-0196
Controlled auto-ignition (CAI) combustion and engine performance and emission characteristics have been intensively investigated in a single-cylinder gasoline direct injection (GDI) engine with an air-assisted injector. The CAI combustion was obtained by residual gas trapping. This was achieved by using low-lift short-duration cams and early closing the exhaust valves. Effects of EVC (exhaust valve closure) and IVO (intake valve opening) timings, spark timing, injection timing, coolant temperature, compression ratio, valve lift and duration, on CAI combustion and emissions were investigated experimentally. The results show that the EVC timing, injection timing, compression ratio, valve lift and duration had significant influences on CAI combustion and emissions. Early EVC and injection timing, higher compression ratio and higher valve lift could enhance CAI combustion. IVO timing had minor effect on CAI combustion.
Technical Paper

Numerical Study of Effects of Fuel Injection Timings on CAI/HCCI Combustion in a Four-Stroke GDI Engine

2005-04-11
2005-01-0144
The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI) was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings, in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes.
Journal Article

Numerical Analysis of a Downsized 2-Stroke Uniflow Engine

2014-10-01
2014-01-9051
In order to optimize the 2-stroke uniflow engine performance on vehicle applications, numerical analysis has been introduced, 3D CFD model has been built for the optimization of intake charge organization. The scavenging process was investigated and the intake port design details were improved. Then the output data from 3D CFD calculation were applied to a 1D engine model to process the analysis on engine performance. The boost system optimization of the engine has been carried out also. Furthermore, a vehicle model was also set up to investigate the engine in-vehicle performance.
Technical Paper

Investigation of Valve Timings on Lean Boost CAI Operation in a Two-stroke Poppet Valve DI Engine

2015-09-01
2015-01-1794
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. In order to take advantage of the inherent ability to retain a large and varied amount of residual at part-load condition and its potential to achieve extreme engine downsizing of a poppet valve engine running in the 2-stroke cycle, a single cylinder 4-valves camless direct injection gasoline engine has been developed and employed to investigate the CAI combustion process in the 2-stroke cycle mode. The CAI combustion is initiated by trapped residual gases from the adjustable scavenging process enabled by the variable intake and exhaust valve timings. In addition, the boosted intake air is used to provide the in-cylinder air/fuel mixture for maximum combustion efficiency.
Technical Paper

Exploring the NOx Reduction Potential of Miller Cycle and EGR on a HD Diesel Engine Operating at Full Load

2018-04-03
2018-01-0243
The reduction in nitrogen oxides (NOx) emissions from heavy-duty diesel engines requires the development of more advanced combustion and control technologies to minimize the total cost of ownership (TCO), which includes both the diesel fuel consumption and the aqueous urea solution used in the selective catalytic reduction (SCR) aftertreatment system. This drives an increased need for highly efficient and clean internal combustion engines. One promising combustion strategy that can curb NOx emissions with a low fuel consumption penalty is to simultaneously reduce the in-cylinder gas temperature and pressure. This can be achieved with Miller cycle and by lowering the in-cylinder oxygen concentration via exhaust gas recirculation (EGR). The combination of Miller cycle and EGR can enable a low TCO by minimizing both the diesel fuel and urea consumptions.
Technical Paper

Evaluations of Scavenge Port Designs for a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine by 3D CFD Simulations

2016-04-05
2016-01-1049
The 2-stroke engine has great potential for aggressive engine downsizing due to its double firing frequency which allows lower indicated mean effective pressure (IMEP) and peak in-cylinder pressure with the same output toque compared to the 4-stroke engine. With the aid of new engine technologies, e.g. direct injection, boost and variable valve trains, the drawbacks of traditional 2-stroke engine, e.g. low durability and high emissions, can be resolved in a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) engine. Compared to the loop-flow or cross-flow engines, the BUSDIG engine, where intake ports are integrated to the cylinder liner and controlled by the movement of piston top while exhaust valves are placed in the cylinder head, can achieve excellent scavenging performance and be operated with high boost.
Technical Paper

Engine Downsizing through Two-Stroke Operation in a Four-Valve GDI Engine

2016-04-05
2016-01-0674
With the introduction of CO2 emissions legislation in Europe and many countries, there has been extensive research on developing high efficiency gasoline engines by means of the downsizing technology. Under this approach the engine operation is shifted towards higher load regions where pumping and friction losses have a reduced effect, so improved efficiency is achieved with smaller displacement engines. However, to ensure the same full load performance of larger engines the charge density needs to be increased, which raises concerns about abnormal combustion and excessive in-cylinder pressure. In order to overcome these drawbacks a four-valve direct injection gasoline engine was modified to operate in the two-stroke cycle. Hence, the same torque achieved in an equivalent four-stroke engine could be obtained with one half of the mean effective pressure.
Journal Article

Effect of Valve Timing and Residual Gas Dilution on Flame Development Characteristics in a Spark Ignition Engine

2014-04-01
2014-01-1205
The goal of this research was to study and quantify the effect of exhaust valve timing and residual gas dilution on in-cylinder flow patterns, flame propagation and heat release characteristics in a spark ignition engine. Experiments were carried out in a recently developed single cylinder optical engine. Particle image velocimetry (PIV) was applied to measuring and evaluating the in-cylinder flow field. Detailed analysis of flame images combined with heat release data was presented for several engine operating conditions, giving insight into the combustion process in terms of visible flame area and flame expansion speed. Results from PIV measurement indicates that the limited alteration of the in-cylinder bulk flow could be observed with the variation of exhaust valve timing. The in-cylinder fluctuating kinetic energies and their Coefficient of Variations (COVs) decrease with the advance of the exhaust valve timing.
Technical Paper

Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector

2006-04-03
2006-01-0206
The application of controlled auto-ignition (CAI) combustion in gasoline direct injection (GDI) engines is becoming of more interest due to its great potential of reducing both NOx emissions and fuel consumption. Injection timing has been known as an important parameter to control CAI combustion process. In this paper, the effect of injection timing on mixture and CAI combustion is investigated in a single-cylinder GDI engine with an air-assisted injector. The liquid and vapour phases of fuel spray were measured using planar laser induced exciplex fluorescence (PLIEF) technique. The result shows that early injection led to homogeneous mixture but late injection resulted in serious stratification at the end of compression. CAI combustion in this study was realized by using short-duration camshafts and early closure of the exhaust valves. During tests, the engine speed was varied from 1200rpm to 2400rpm and A/F ratio from stoichiometric to lean limit.
Technical Paper

Direct In-cylinder CO2 Measurements of Residual Gas in a GDI Engine for Model Validation and HCCI Combustion Development

2013-04-08
2013-01-1654
An accurate prediction of residual burned gas within the combustion chamber is important to quantify for development of modern engines, especially so for those with internally recycled burned gases and HCCI operations. A wall-guided GDI engine has been fitted with an in-cylinder sampling probe attached to a fast response NDIR analyser to measure in-situ the cycle-by-cycle trapped residual gas. The results have been compared with a model which predicts the trapped residual gas fraction based on heat release rate calculated from the cylinder pressure data and other factors. The inlet and exhaust valve timings were varied to produce a range of Residual Gas Fraction (RGF) conditions and the results were compared between the actual measured CO2 values and those predicted by the model, which shows that the RGF value derived from the exhaust gas temperature and pressure measurement at EVC is consistently overestimated by 5% over those based on the CO2 concentrations.
Technical Paper

Control of CAI Combustion Through Injection Timing in a GDI Engine With an Air- Assisted Injector

2005-04-11
2005-01-0134
Controlled auto Ignition (CAI) combustion has great potential for reducing both NOx emissions and fuel consumption in IC engines and the application of direct injection technology to the CAI engine adds another dimension of control to the combustion process. In this work an air-assisted injection system was applied to an engine that used residual gas to initiate and control CAI combustion. Injections were performed at Exhaust valve closure (EVC), intake valve opening (IVO) and BDC of the intake/compression stroke and the effects on combustion phasing (i.e. ignition timing and burn duration), engine output, fuel consumption and exhaust emissions analyzed. Injection at EVC gave the best results in terms of engine output, operating range and combustion stability. Injection at IVO generally resulted in the lowest fuel consumption. It was found that injection timing is an effective means of controlling combustion phasing.
Technical Paper

Control Strategies for Steady and Transient Operation of a 4-Stroke Gasoline Engine with CAI Combustion Using a 4-Variable Valve Actuating System (4VVAS)

2006-04-03
2006-01-1083
In the last few years, residual gas trapping has been widely used to achieve CAI combustion operation in the four-stroke gasoline engine by means of the negative valve overlap period. In this paper, a flexible mechanical variable valve actuation system based on the production technologies is described. The 4VVAS system is capable of independent control of intake valve lift and its timing, exhaust valve lift and its timing and it has been incorporated in a specially designed cylinder head for a single cylinder research engine. In addition, an engine simulation program has been developed to investigate the potential of the 4VVAS system for CAI engine operation and the switch between CAI and SI operations on the same engine. The engine simulation program is written with Matlab Simulink and incorporates an engine block, a newly developed CAI ignition and heat release model, a valve profile generator, and an engine control module for spark ignition and fuelling control.
Technical Paper

Combustion and Emission Characteristics of a HCCI Engine Fuelled with Different n-Butanol-Gasoline Blends

2014-10-13
2014-01-2668
Biobutanol, i.e. n-butanol, as a second generation bio-derived alternative fuel of internal combustion engines, can facilitate the energy diversification in transportation and reduce carbon dioxide (CO2) emissions from engines and vehicles. However, the majority of research was conducted on spark-ignition engines fuelled with n-butanol and its blend with gasoline. A few investigations were focused on the combustion and exhaust emission characteristics of homogeneous charge compression ignition (HCCI) engines fuelled with n-butanol-gasoline blends. In this study, experiments were conducted in a single cylinder four stroke port fuel injection HCCI engine with fully variable valve lift and timing mechanisms on both the intake and exhaust valves. HCCI combustion was achieved by employing the negative valve overlap (NVO) strategy while being fueled with gasoline (Bu0), n-butanol (Bu100) and their blends containing 30% n-butanol by volume (Bu30).
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

Analysis of the Effect of Intake Plenum Design on the Scavenging Process in a 2-Stroke Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2017-03-28
2017-01-1031
In this study, the effect of the intake plenum design on the scavenging process in a newly proposed 2-stroke Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) engine was studied in detail by three dimensional (3D) computational fluid dynamics (CFD) simulations. In the BUSDIG engine, the intake scavenge ports are integrated into the cylinder liner and their opening and closure are controlled by the movement of piston top while exhaust valves are placed in the cylinder head. In order to accommodate the optimized scavenge ports in the real engine application, the intake plenum with an inlet pipe and a scavenge chamber was designed and connected to the 12 evenly distributed scavenge ports in a single cylinder BUSDIG engine.
X