Refine Your Search



Search Results

Technical Paper

Visualization of EGR Influence on Diesel Combustion With Long Ignition Delay in a Heavy-duty Engine

The effects of EGR on diesel combustion were visually examined in a single-cylinder heavy duty research engine with a low compression ratio, low swirl, a CR fuel injection system and an eight-orifice nozzle. Optical access was primarily obtained through the cylinder head. The effects of EGR were found to be significant. NOx emissions were reduced from over 500 ppm at 0% EGR to 5 ppm at 55% EGR. At higher levels of EGR (approximately 35% or more) there was a loss in efficiency. Constant fuel masses were injected. Results from the optical measurements and global emission data were compared in order to obtain a better understanding of the spray behaviour and mixing process. Optical measurements provide fundamental insights by visualizing air motion and combustion behaviour. The NOx reductions observed might be explained by reductions in oxygen concentration associated with the increases in EGR.
Journal Article

Valve Profile Adaptation, Stratification, Boosting and 2-Stroke Strategies for Raising Loads of Gasoline HCCI Engines

The development of high efficiency powertrains is a key objective for car manufacturers. One approach for improving the efficiency of gasoline engines is based on homogeneous charge compression ignition, HCCI, which provides higher efficiency than conventional strategies. However, HCCI is only currently viable at relatively low loads, primarily because at high loads it involves rapid combustion that generates pressure oscillations in the cylinder (ringing), and partly because it gives rise to relatively high NOX emissions. This paper describes studies aimed at increasing the viability of HCCI combustion at higher loads by using fully flexible valve trains, direct injection with charge stratification (SCCI), and intake air boosting. These approaches were complemented by using EGR to control NOX emissions by stoichiometric operation, which enables the use of a three-way catalyst.
Technical Paper

Turbulence Characteristics of Tumbling Air Motion in Four-Valve S.I. Engines and their Correlation with Combustion Parameters

An experimental investigation has been carried out of the turbulence characteristics of tumble air motion in four-valve pent roof combustion chambers. This was conducted on an optically accessed single cylinder research engine under motored conditions at an engine speed of 1500 rev/min. Four cylinder heads with varying tumble magnitude were evaluated using conventional and scanning Laser Doppler Anemometry (LDA) measurements. Analysis algorithms developed to account for the effects of mean flow cyclic variations and system noise were used to obtain unbiased estimates of turbulence intensity and integral length scales. The cylinder heads were also evaluated for combustion performance on a Ricardo single cylinder Hydra engine. Mixture and EGR loops at 1500 rev/min and 1.5 bar BMEP were carried out and cylinder pressure data was analysed to derive combustion characteristics.
Technical Paper

Transient Responses of Various Ammonia Formation Catalyst Configurations for Passive SCR in Lean-Burning Gasoline Engines under Various Real Engine Conditions.

Passive selective catalyst reduction (SCR) systems can be used as aftertreatment systems for lean burn spark ignition (SI)-engines. Their operation is based on the interaction between the engine, an ammonia formation catalyst (AFC), and an SCR catalyst. Under rich conditions the AFC forms ammonia, which is stored in the SCR catalyst. Under lean conditions, the SCR catalyst reduces the engine out NOx using the stored NH3. This study compared the ammonia production and response times of a standard three way catalyst (TWC) and a Pd/Al2O3 catalyst under realistic engine operating conditions. In addition, the relationships between selected engine operating parameters and ammonia formation over a TWC were investigated, considering the influence of both the chosen load point and the engine settings.
Technical Paper

The Volvo 5-Cylinder Engine with 4-Valve Technology - A New Member of Volvos Modular Engine Family

During 1991 Volvo Car Corporation has introduced the new Volvo 850 GLT model featuring front wheel drive with transverse installation of the engine and gearbox. The powertrain; consists of a new in-line five-cylinder engine in combination with a four speed electronically controlled automatic gearbox or a five speed manual gearbox. The engine features DOHC 20 valves, V-VIS (Volvo Variable Induction System), well tuned exhaust system and microprocessor controlled engine management systems. The engine was designed and developed as a new member of Volvo's modular engine family. The first member was the in-line six-cylinder engine B6304F [1] introduced in 1990. The modular engines have a large number of identical components and the major components are machined in common transfer lines which makes the manufacturing process highly rational and cost-effective.
Technical Paper

The Volvo 3-Litre 6-Cylinder Engine with 4-Valve Technology

During 1990, the Volvo Car Corporation will Introduce a new In-line six-cylinder engine featuring three litre displacement, twin overhead camshafts and 24 valves, designated the B6304F. The engine has been designed and adapted for Volvo's top-of-the-line model 960, and it has been developed to meet the market's high demands on comfort, performance, reliability, economy and environmental friendliness. The engine has been designed and manufactured with the help of advanced CAE technology. The engine structure consists of five basic aluminium parts. This construction contributes to the low engine weight of 182 kg including auxiliary units, oil and wiring. The engine's gas flow has been optimized with the help of data simulation and laser measurement technology so as to ensure efficient utilization of energy. Fuel injection and ignition timing are regulated and controlled by an advanced electronic control system, the Bosch Motronic 1.8.
Technical Paper

The Influence of PRF and Commercial Fuels with High Octane Number on the Auto-ignition Timing of an Engine Operated in HCCI Combustion Mode with Negative Valve Overlap

A single-cylinder engine was operated in HCCI combustion mode with different kinds of commercial fuels. The HCCI combustion was generated by creating a negative valve overlap (early exhaust valve closing combined with late intake valve opening) thus trapping a large amount of residuals (∼ 55%). Fifteen different fuels with high octane numbers were tested six of which were primary reference fuels (PRF's) and nine were commercial fuels or reference fuels. The engine was operated at constant operational parameters (speed/load, valve timing and equivalence ratio, intake air temperature, compression ratio, etc.) changing only the fuel type while the engine was running. Changing the fuel affected the auto-ignition timing, represented by the 50% mass fraction burned location (CA50). However these changes were not consistent with the classical RON and MON numbers, which are measures of the knock resistance of the fuel. Indeed, no correlation was found between CA50 and the RON or MON numbers.
Technical Paper

The Influence of Injector Deposits on Mixture Formation in a DISC SI Engine

This paper presents a follow on study from earlier work investigating the influence of fuel parameters on the deposit formation and emissions from a direct injection stratified charge spark ignition engine. It was shown that injector fouling was the main reason for the increase in unburned hydrocarbon emissions and spray visualizations supported these results. The hypothesis is that the deposit buildup in the injector caused the increased hydrocarbon emissions due to an increased wall film formation. To further verify the findings, Phase Doppler Anemometry measurements at simulated engine conditions, were performed. Measurements recorded on the injector axis 20 mm downstream from the injector orifice, showed that the initial pre-jet velocity was 30% higher and the drop mean diameter was 5% larger in the case of a used injector compared to a new injector. Based on these investigations, spray files were set-up in the 3-D CFD-code AVL FIRE™.
Technical Paper

The Effects of Multirow Nozzles on Diesel Combustion

In a diesel engine, the combustion and emissions formation are governed by the spray formation and mixing processes. To meet the stringent emission legislations of the future, which will demand substantial reductions of NOX and particulate emissions from diesel engines, the spray and mixing processes play a major roll. Different fuel injection systems and injection strategies have been developed to achieve better performance and lower emissions from the diesel engine almost without investigating the influence of the injector nozzle orifices. A reduction in the nozzle orifice diameter is important for an increased mixing rate and formation of smaller droplets which is beneficial from emissions and fuel consumption point of view, as long as the local air-to-fuel ratio (AFR) is kept at a sufficiently lean level.
Technical Paper

The Effects of Leaner Charge and Swirl on Diesel Combustion

Substantial reduction of NOX and particulate emissions from diesel engines will be required by the emission legislation in the future. In a diesel engine, the combustion and emissions formation are governed by the spray formation and mixing processes. Parameters of importance are droplet size, droplet distribution, injection velocity, in-cylinder flow (convection and turbulence) and cylinder charge temperature/pressure. The mixing is controlled by convective and turbulent mixing due to in-cylinder charge motion, momentum transfer and turbulence induced by the injection process. The most important processes are known to be the turbulent macro- and micromixing. Smaller nozzle orifices are believed to increase mixing rate, due to smaller droplet size leading to faster evaporation. Dimensional analysis suggests that the turbulent mixing time, τmix, scales with orifice diameter, d.
Technical Paper

The Effect of Knock on the Heat Transfer in an SI Engine: Thermal Boundary Layer Investigation using CARS Temperature Measurements and Heat Flux Measurements

It is generally accepted that knocking combustion influences the heat transfer in SI engines. However, the effects of heat transfer on the onset of knock is still not clear due to lack of experimental data of the thermal boundary layer close to the combustion chamber wall. This paper presents measurements of the temperature in the thermal boundary layer under knocking and non-knocking conditions. The temperature was measured using dual-broadband rotational Coherent anti-Stokes Raman Spectroscopy (CARS). Simultaneous time-resolved measurements of the cylinder pressure, at three different locations, and the heat flux to the wall were carried out. Optical access to the region near the combustion chamber wall was achieved by using a horseshoe-shaped combustion chamber with windows installed in the rectangular part of the chamber. This arrangement made CARS temperature measurements close to the wall possible and results are presented in the range 0.1-5 mm from the wall.
Technical Paper

The Effect of Knock on Heat Transfer in SI Engines

Heat transfer to the walls of the combustion chamber is increased by engine knock. In this study the influence of knock onset and knock intensity on the heat flux is investigated by examining over 10 000 individual engine cycles with a varying degree of knock. The heat transfer to the walls was estimated by measuring the combustion chamber wall temperature in an SI engine under knocking conditions. The influence of the air-fuel ratio and the orientation of the oscillating cylinder pressure-relative to the combustion chamber wall-were also investigated. It was found that knock intensities above 0.2 Mpa influenced the heat flux. At knock intensities above 0.6 Mpa, the peak heat flux was 2.5 times higher than for a non-knocking cycle. The direction of the oscillations did not affect the heat transfer.
Technical Paper

The Effect of Charge Air and Fuel Injection Parameters on Combustion with High Levels of EGR in a HDDI Single Cylinder Diesel Engine

When increasing EGR from low levels to levels corresponding to low temperature combustion, soot emissions first start to increase (due to reductions in soot oxidation), before decreasing to almost zero (due to very low rates of soot formation). At the EGR level where soot emissions start to increase, the NOx emissions are still low, but not low enough to comply with future emission standards. The purpose of this study was therefore to investigate the possibilities for moving the so-called “soot bump” (increase in soot) to higher EGR levels or reducing the magnitude of the soot bump. This involved an experimental investigation of parameters affecting the combustion and thus the engine-out emissions. The parameters investigated were: charge air pressure, injection pressure, EGR temperature and post injection (with different dwell times) for a wide range of EGR rates.
Journal Article

Stratified Cold Start Sprays of Gasoline-Ethanol Blends

Gasoline and gasoline-ethanol sprays from an outward-opening piezo-injector were studied in a constant volume/pressure chamber using high-speed imaging and phase doppler anemometry (PDA) under stratified cold start conditions corresponding to a vehicle ambient temperature of 243 K (−30°C/−22°F); in-cylinder air pressure of 5 bar, air temperature of 350 K (−30°C/−22°F) and fuel temperature of 243 K. The effects of varying in-cylinder pressure and temperature, fuel injection pressure and fuel temperature on the formation of gasoline, E75 and pure ethanol sprays were investigated. The results indicate that fuel composition affects spray behaviour, but less than expected. Furthermore, varying the temperature of the fuel or the air surrounding the spray also had minor effects. As expected, the fuel injection pressure was found to have the strongest influence on spray formation under stratified conditions.
Technical Paper

Spray Shape and Atomization Quality of an Outward-Opening Piezo Gasoline DI Injector

The spray formation and consequent atomization of an outward opening piezo-electric gasoline DI injector have been experimentally investigated in a constant pressure spray chamber. The sizes and velocities of the droplets and the resulting spray shape were evaluated, under different boundary conditions, using Planar Mie scattering and Planar Laser-induced Fluorescence (PLIF) in combination with Phase Doppler Anemometry (PDA) analyses and high-speed video photography. The use of piezo-electric actuation for gasoline DI injectors provides an additional means to control the atomization and spray shape that is not available with solenoid-driven injectors such as swirling and multi-hole type injectors. For instance, with piezo injectors up to four injections per cycle are possible, and the fuel flow rate can be controlled by adjusting needle lift. The captured high-speed video images show that a hollow-cone spray forms as the fuel exits the outward-opening nozzle.
Technical Paper

Spark Assisted HCCI Combustion Using a Stratified Hydrogen Charge

Future requirements for emission reduction from combustion engines in ground vehicles might be met by using the HCCI combustion concept. In this concept a more or less homogenous air fuel mixture is compressed to auto ignition. This gives good fuel consumption compared to a normal SI engine and its ability to burn lean mixtures at low temperatures has a positive impact on exhaust emissions. However, there are challenges associated with this concept, for instance its limited operating range and combustion control. The objective of this work is to investigate a hybrid concept, based on a combination of HCCI combustion of n-heptane and SI combustion of hydrogen. The basic idea is to initiate HCCI combustion with a spark ignited stratified lean hydrogen mixture. To verify that the combustion sequence consists of flame front combustion followed by HCCI combustion, photographs of OH chemiluminescence from the combustion were taken.
Technical Paper

Sources of Hydrocarbon Emissions from a Direct Injection Stratified Charge Spark Ignition Engine

The purpose of this paper is to assess the influence of fuel properties on cycle-resolved exhaust hydrocarbons and investigate the sources of hydrocarbon (HC) emissions in a direct injection stratified charge (DISC) SI engine. The tested engine is a single cylinder version of a commercial DISC engine that uses a wall guided combustion system. The HC emissions were analyzed using both a fast flame ionization detector (Fast FID) and conventional emission measurement equipment. Three fuels were compared in the study: iso-Pentane, iso-Octane and a gasoline of Japanese specification. The measurements were conducted at part-load, where the combustion is in stratified mode. The start of injection (SOI) was altered in relation to the series calibration to vary the mixture preparation time, the time from SOI to ignition. The ignition timing was set at maximum brake torque (MBT) for each test.
Technical Paper

Simulation of a Two-Stroke Free Piston Engine

The free piston internal combustion engine used in conjunction with a linear alternator offers an interesting choice for use in hybrid vehicles. The linear motion of the pistons is directly converted to electricity by the alternator, and the result is a compact and efficient energy converter that has only one moving part. The movement of the pistons is not prescribed by a crank mechanism, but is the result of the equilibrium of forces acting on the pistons, and the engine will act like a mass-spring system. This feature is one of the most prominent advantages of the FPE (Free Piston Engine), as the lack of mechanical linkage gives means of varying the compression ratio in simple manners, without changing the hardware of the engine. By varying the compression ratio, it is also it possible to run on a multitude of different fuels and to use HCCI (Homogeneous Charge Compression Ignition) combustion.
Technical Paper

Role of Late Soot Oxidation for Low Emission Combustion in a Diffusion-controlled, High-EGR, Heavy Duty Diesel Engine

Soot formation and oxidation are complex and competing processes during diesel combustion. The balance between the two processes and their history determines engine-out soot values. Besides the efforts to lower soot formation with measures to influence the flame lift-off distance for example or to use HCCI-combustion, enhancement of late soot oxidation is of equal importance for low-λ diffusion-controlled low emissions combustion with EGR. The purpose of this study is to investigate soot oxidation in a heavy duty diesel engine by statistical analysis of engine data and in-cylinder endoscopic high speed photography together with CFD simulations with a main focus on large scale in-cylinder gas motion. Results from CFD simulations using a detailed soot model were used to reveal details about the soot oxidation.
Technical Paper

Reduction of Soot Emissions from a Direct Injection Diesel Engine using Water-in-Diesel Emulsion and Microemulsion Fuels

The emissions from a direct injection diesel engine measured according to the ECE R49 13-mode cycle and as a function of exhaust gas recirculation are compared for diesel fuel without water addition, and for water-in-diesel as emulsion and microemulsion. The effect of water addition on the soot emissions was remarkably strong for both the emulsion and microemulsion fuels. The average weighted soot emission values for the 13-mode cycle were 0.0024 and 0.0023 g/kWh for the two most interesting emulsion and microemulsion fuels tested, respectively; 5-fold lower than the US 2007 emission limit.