Refine Your Search

Topic

Search Results

Technical Paper

VERT: Diesel Nano-Particulate Emissions: Properties and Reduction Strategies

1998-02-23
980539
Increasing concern, about the health risk due to solid aerosols from engine combustion, has provoked more stringent imission limits, for soot particles in the range of pulmonary intrusion, at critical work-places (e.g. tunnel sites, see Table 1). Within the scope of the joint European project VERT, these emissions were characterized and their effective curtailment through exhaust gas after-treatment investigated. Diesel engines, irrespective of design and operating point, emit solid particulates in the range of 100 nm, at concentrations above 10 million particulates per cm3. Engine tests showed that a drastic curtailment of pulmonary intruding particulates seems not feasible by further development of the engine combustion, nor by reformulation of fuels, nor by deployment of oxidation catalytic converters. Particulate traps, however, can curtail the total solid particulate count, in the fine particulate range 15-500 nm, by more than two orders of magnitude.
Technical Paper

VERT Particulate Trap Verification

2002-03-04
2002-01-0435
Particulate traps are mechanical devices for trapping soot, ash and mineral particles, to curtail emissions from Diesel engines. The filtration effectiveness of traps can be defined, independent of the pertinent engine, as a function of the particle size, space velocity and operating temperature. This method of assessment lowers cost of certifying traps for large-scale retrofitting projects [1,2]. VERT [3] is a joint project of several European environmental and occupational health agencies. The project established a trap-verification protocol that adapts industrial filtration standards [4] to include the influence of soot burden and trap regeneration phenomena. Moreover, it verifies possible catalytic effects from coating substrates and deposited catalytic active material from engine wear or fuel/ lubricant additives.
Technical Paper

VERT - Clean Diesel Engines for Tunnel Construction

1997-02-24
970478
Diesel engines are irreplaceable in tunnel construction. The particulate emissions of present day engines are so high that the imission limits valid since 1991 cannot be attained by ventilation alone. This problem had to be solved preparatory to the large tunnel projects in Switzerland, Austria and Germany. Several retro-fitting measures were investigated both in the laboratory and in field tests, within the scope of the Project VERT. Oxidation catalytic converters, exhaust gas recirculation, and the usage of special fuels cannot be recommended. Particulate trap deployment, in different systems, was mostly successful. Particular attention was focused on the dependable filtration of finest particulates < 200 nm. The VERT proved that exhaust gas after-treatment with particulate traps is feasible, cost effective and controllable in the field. Pertinent directives are in discussion.
Technical Paper

Trapping Efficiency Depending on Particulate Size

1996-02-01
960472
There is growing concern about the risk potential of Diesel particulates. This prompted two Swiss R&D projects focused on the capabilities of different soot trap concepts for filtering finest particulates. Eight different filter media, some in numerous variants, were tested on four different Diesel engines. All traps attained their gravimetric target. However, there are noticeable performance differences for finest particulates at or smaller than 50 nm. Fiber deep filters seem to be noticeably better than other filter types. If the carcinogens are mainly the finest particulates, then this criterion may become important in future trap evaluation.
Technical Paper

Testing of Combined DPF+SCR Systems for HD-retrofitting – VERTdePN

2009-04-20
2009-01-0284
New Diesel exhaust gas aftertreatment systems, with combined DPF*) and deNOx (mostly SCR) systems represent a very important step towards zero emission Diesel fleet. These combined systems are already offered today by several suppliers for retrofitting of HD vehicles. Reliable quality standards for those quite complex systems are urgently needed to enable decisions of several authorities. The present report informs about the international network project VERT *) dePN (de-activation, de-contamination, disposal of particles and NOx), which was started in Nov. 2006 with the objective to introduce the SCR-, or combined DPF+SCR-systems in the VERT verification procedure. Examples of results for some of the investigated systems are given. These investigations included parameters, which are important for the VERT quality testing: besides the regulated gaseous emissions several unregulated components such as NH3, NO2 and N2O were measured.
Technical Paper

Summer Cold Start and Nanoparticulates of Small Scooters

2002-03-04
2002-01-1096
1 Small scooters are very much used in the congested centers of the European cities. Even if there is a continuous technical progress, the small two-wheelers are a remarkable source of air pollution. During the research programs of the Swiss Federal Office of Environment Forests and Landscape (FOEFL) - and as a contribution to the European project ARTEMIS *) analysis of limited and nonlimited emissions of scooters was performed. Exhaust emissions measurements of two Scooters: 4-stroke 125 cc and 2-stroke 50 cc have been performed with and without catalyst. Identical driving cycles have been repeated and the influence of the cooling duration on limited the emissions at cold start was investigated. A cold start in the temperature range of 20 - 25 °C can be regarded as a “summer cold start”. As nonlimited emissions the nanoparticulate emissions at cold and warm operating conditions were measured by means of SMPS, ELPI and NanoMet *).
Technical Paper

Summer Cold Start and Nanoparticulates of 4 Stroke Motorcycles

2003-09-16
2003-32-0025
1 During the research programs of the Swiss Federal Office of Environment Forests and Landscape (FOEFL) - and as a contribution to to the European project ARTEMIS*) analysis of limited and nonlimited emissions of motorcycles was performed. Exhaust emissions measurements of two motorcycles without catalyst: 4-stroke 750 cc and 1100 cc have been performed in the present work. Identical driving cycles have been repeated and the influence of the cooling duration on the emissions at cold start was investigated. A cold start in the temperature range of 20 ÷ 25 °C can be regarded as a “summer cold start”. As nonlimited emissions the nanoparticulate emissions at cold and warm operating conditions were measured by means of SMPS and NanoMe**). The measurements were performed at steady state and at transient operating conditions. The present work cleared up several details about the emissions of strong motorized motorcycles.
Technical Paper

Sequential Multipoint Trans-Valve-Injection for Natural Gas Engines

1999-03-01
1999-01-0565
1 Sequential multipoint portinjection of compressed natural gas (CNG) offers several advantages to CNG-engines. With the Trans-Valve-Injection system (TVI) a high speed gas jet is pulsed from the intake port through the open intake valve into the combustion chamber, where it causes effects of turbulence and charge stratification particularly at engine part load operation. The system is able to diminish the cyclic variations and to expand the limit of lean operation of the engine. The flexibility of gas pulse timing offers the potential advantage of lower emissions and fuel consumption. The TVI-System including special two-stage injectors was developed at Lucerne School of Engineering. In the present project this system was tested on a 2.8 litre natural aspirated CNG-IVECO-engine, at the Biel School of Engineering, Switzerland.
Technical Paper

Secondary Emissions Risk Assessment of Diesel Particulate Traps for Heavy Duty Applications

2005-01-19
2005-26-014
Most particulate traps efficiently retain soot of diesel engine exhaust but the potential hazard to form secondary emissions has to be controlled. The Diesel Particle Filter (DPF) regeneration is mainly supported by metal additives or metallic coatings. Certain noble or transition metals can support the formation of toxic secondary emissions such as Dioxins, Polycyclic Aromatic Hydrocarbons (PAH), Nitro-PAH or other volatile components. Furthermore, particulate trap associated with additive metals can penetrate through the filter system or coating metals can be released from coated systems. The VERT test procedure was especially developed to assess the potential risks of a formation of secondary pollutants in the trap. The present study gives an overview to the VERT test procedure. Aspects of suitability of different fuel additives and coating metals will be discussed and examples of trap and additive induced formation of toxic secondary emissions will be presented.
Technical Paper

Performance of HD-DI-Diesel Engine with Addition of Ethanol and Rapeseed Oil

1994-03-01
940545
Some alternative fuels which can be produced in the agriculture may be suitable for engine applications, particularly in the cases of self-supply. Use of pure alcohol and crude plant oil as fuels poses some problems. This paper analyzes several potential applications using mixtures of ethanol, crude rape oil or a combination of both. The analysis of injection, combustion and of the total emissions was carried out. Additives influences on emission and combustion characteristics depend on the engine's operational range. In general ethanol decreases particulate emissions, increases ignition delay due to the lower cetane number and shortens combustion duration. Crude rape oil increases the emissions of particulates and affects less the combustion speed. Both diminish full load torque due to the lower caloric value. 30 % ethanol - 15 % rape oil mixtures were used to obtain on the investigated HD-DI-engine emissions, similar to conventional diesel fuel.
Technical Paper

Particulate Traps for Retro-Fitting Construction Site Engines VERT: Final Measurements and Implementation

1999-03-01
1999-01-0116
1 The VERT project aimed at curtailing the construction site diesel emissions of ultra-fine particles to 1% of the raw emissions. Thus, compliance with occupational health legislation should be achieved. Particulate traps have attained this target. In contrast, engine tuning, reformulated fuels and oxidation catalytic converters are almost ineffective. This paper reports on the concluding project stage in which 10 traps were field tested during 2 years. Subsequent detailed measurements confirmed the excellent results: > 99% filtration rate was achieved in the nano-particulate range. The PAH, too, were very efficiently eliminated. Trap deployment becomes therefore imperative to fulfill VERT-targets.
Technical Paper

Particulate Traps for Construction Machines Properties and Field Experience

2000-06-19
2000-01-1923
1 Occupational Health Authorities in Germany and Switzerland require the use of particulate traps (PT) on construction machines used in underground and in tunneling since 1994. Swiss EPA has extended this requirement 1998 to all construction sites which are in or close to cities. During the VERT*-project, [1, 2, 3, 4, 5]**, traps systems were evaluated for this purpose and only those providing efficiencies over 95% for ultrafine particles < 200 nm have received official recommendation. 10 trap-systems are very popular now for these application, most of them for retrofitting existing engines. Efficiency data will be given as well as experience during a 2-years authority-controlled field test. LIEBHERR, producing their own Diesel engines in Switzerland and construction machines in Germany is the first company worldwide supplying particulate traps as OEM-feature (Original Equipment Manufacturing) on customers request.
Technical Paper

Particulate Traps Used in City-Buses in Switzerland

2000-06-19
2000-01-1927
1 Switzerland is enforcing the use of particulate traps for offroad applications like construction as well as for occupational health applications like tunneling. This decision is based on the results of the VERT-project (1994-1999), which included basic aerosol research, bench screening and field testing of promising solutions as well as the development of implementation tools like trap specification, certification scheems and field control measures. On the other hand there is no corresponding regulation for city-buses yet although PM 10 is about 2× above limit in most Swiss cities. Public pressure however is growing and city transport authorities have reacted by retrofitting Diesel city-buses instead of waiting for cleaner engine technology or CNG-conversions. The favored trap system with about 200 retrofits so far is the CRT.
Technical Paper

Particle Size Distribution Downstream Traps of Different Design

1995-02-01
950373
High levels of particulate emissions from Diesel engines, in tunnel construction sites, force the aftertreatment of exhaust gases with particulate traps. Sub-micron particulates are suspected to be carcinogenic. Hence, the size distribution of particulates was compared for different particulate trap systems. The two extreme types are the ceramic monolith surface filter and the typical deep-bed filter of knitted fiber. These two types have distinctly different properties. The gravimetric evaluation of both systems show comparable efficiencies around 90%. If, instead, the particle count is evaluated: the efficiency of the surface filter drops below 70%, whereas that of the deep-bed filter increases. The spectral analysis of distinct solid particulates shows that the efficiency of the surface filter deteriorates for particles smaller than 100 nm. The toxicological consequences are disquieting.
Technical Paper

Nanoparticulates Of A Scooter With 2-Stroke Direct Injection (TSDI) And Comparison With Other Technologies

2004-01-16
2004-28-0024
1 Analysis of limited and nonlimited emissions of scooters was performed during several research programs of the Swiss Federal Office of Environment Forests and Landscape (FOEFL) - and as a contribution to the European project ARTEMIS *). Small scooters, which are very much used in the congested centers of the European cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of a Peugeot scooter with TSDI (Two Stroke Direct Injection) were performed and the emissions were compared to the other 2-S & 4-S scooters. As nonlimited emissions the nanoparticulate emissions at cold and warm operating conditions were measured by means of SMPS, ELPI and NanoMet *). The measurements were both: at steady state and at transient operating conditions.
Technical Paper

Nanoparticle Emissions of a DI 2-Stroke Scooter with Varying Oil- & Fuel Quality

2005-04-11
2005-01-1101
Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape (SAEFL, BUWAL)*). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of a Peugeot scooter with TSDI (Two Stroke Direct Injection) were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet *). Also the particle mass emission (PM) was measured with the same method as for Diesel engines. It can be stated, that the oil and fuel quality have a considerable influence on the particle emissions, which are mainly oil condensates.
Technical Paper

Limited Emissions and Nanoparticulates of a Scooter with 2-Stroke Direct Injection (TSDI)

2003-06-23
2003-01-2314
1 Analysis of limited and nonlimited emissions of scooters was performed during several research programs of the Swiss Federal Office of Environment Forests and Landscape (FOEFL) - and as a contribution to the European project ARTEMIS*). Small scooters, which are very much used in the congested centers of the European cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investiga-tions of a Peugeot scooter with TSDI (Two Stroke Direct Injection) were per-formed and the emissions were compa-red to the other 2-S & 4-S scooters. As nonlimited emissions the nanopar-ticulate emissions at cold and warm operating conditions were measured by means of SMPS, ELPI and NanoMet*). The measurements were both: at steady state and at transient operating conditions.
Technical Paper

Impact of RME/Diesel Blends on Particle Formation, Particle Filtration and PAH Emissions

2005-04-11
2005-01-1728
Vegetable oils blended to Diesel fuel are becoming popular. Economic, ecological and even political reasons are cited to decrease dependence on mineral oil and improve CO2 balance. The chemical composition of these bio fuels is different from mineral fuel, having less carbon and much more oxygen. Hence, internal combustion of Diesel + RME (Rapeseed Methyl Ester) blends was tested with particular focus on nanoparticle emissions, particle filtration characteristics and PAH-emissions. Fuel economy and emissions of bus engines were investigated in traffic, on a test-rig during standardized cycles, and on the chassis dynamometer. Fuel compositions were varied from standard EN 590 Diesel with <50 ppm sulfur to RME blends of 15, 30, and 50%. Also 100 % RME was tested on the test-rig. Emissions were compared with and without CRT traps. The PAH profiles of PM were determined. Particles were counted and analyzed for size, surface, and composition, using SMPS, PAS, DC and Coulometry.
Technical Paper

Filtration of Diesel Soot Nanoparticles and Reliability in Swiss HDV Retrofitting

2005-01-19
2005-26-015
Based on the emission inventory Fig. 1, the Swiss 1998 Ordinance on Air Pollution Control (OAPC) mandates curtailment of carcinogenic diesel particle emissions at type B construction sites [1]. Moreover, particle traps are compulsory at underground workplaces [2]. In compliance, more than 6,000 Diesel engines were retrofitted with various particle trap systems. Many traps surpassed 99% filtration efficiency and secondary emissions were mostly prevented. However, trap failure due to mechanical and thermal damage was initially rather high at about 10%. By the year 2000 the failure rate was halved to about 6%. Thanks to focussed improvements, the year 2003 statistics show yearly failures of “only” about 2%. The Swiss target is to retrofit 15,000 construction machines with traps, fully compliant with environmental directives, having 5,000 operating hours durability and failure rates below 1%. Traps must pass the VERT suitability test before deployment.
X