Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Steady-State Thermal Flows in an Air-Cooled, Four-Stroke Spark-Ignition Engine

Measurements of the instantaneous heat flux at three positions on the cylinder head surface, and the steady-state cylinder head temperatures at four positions on the cylinder head have been obtained. Engine tests were performed for a range of air-fuel ratios including regimes rich of stoichiometric, stoichiometric, and lean of stoichiometric. In addition, ignition timing was advanced in increments from 22° BTDC to 40° BTDC. All tests were run with the throttle either fixed in the wide open position, or fixed in a position that produced 75% of the maximum power with the standard ignition timing and an air-fuel ratio of 13.5. This was done to ensure that changes in air mass flow rate were not influencing the results. In addition, all tests were performed with a fuel mixture preparation being provided by system designed to deliver a homogeneous premixed charge to the inlet port. This was done to ensure that mixture preparation issues were not confounding the results.
Technical Paper

Near-Wall Velocity Characteristics in Valved and Ported Motored Engines

To study the near-wall velocity characteristics, gas velocity measurements have been made near the cylinder head of a motored four-stroke engine using Laser Doppler Velocimetry (LDV), and near-wall flow characteristics have been observed in three different two-stroke geometries using Particle Image Velocimetry (PIV) and particle photographs. The results of these studies show that the behavior of the fluid near the wall depends on the engine intake geometry, combustion chamber geometry, and operating condition. The near-wall velocity characteristics tend to be one of two forms. In one form, the behavior is one of an extended region of low momentum fluid, where an imbalance in radial pressure gradient forces and centripetal forces exists because of the combined effects of fluid rotation and shear. Such a flow can be seen in engines with gas exchange systems that do not promote scrubbing of the wall, and in cylinder geometry that does not cause flow normal to the wall.
Technical Paper

Interactions and Main Effects with Auxiliary Injection in a Two-Stroke DI Diesel Engine

A two-stroke diesel engine was outfitted for operation with an electronic solenoid-controlled unit injector and an additional solenoid-controlled air-assisted injector at the inlet ports. Factorial experiments were designed in order to quantify, in a statistically representative manner, the effects of pilot (or ‘split’) and port auxiliary injection on main fuel combustion. Results indicated that interactions between experimental parameters (such as between pilot fuel quantity and pilot-to-main spacing), as well as main effects are important in analyzing auxiliary fuel injection. The bulk gas temperature at main injection was determined primarily by the experimental parameters acting independently of one another, which is a case where main effects only are important. Conversely, analysis of indicated specific fuel consumption and peak cylinder pressure involved interactions of the experimental parameters in both cases.
Technical Paper

In-Cylinder Mixing Rate Measurements and CFD Analyses

Gas-phase in-cylinder mixing was examined by two different methods. The first method for observing mixing involved planar Mie scattering measurements of the instantaneous number density of silicon oil droplets which were introduced to the in-cylinder flow. The local value of the number density was assumed to be representative of the local gas concentration. Because the objective was to observe the rate in which gas concentration gradients change, to provide gradients in number density, droplets were admitted into the engine through only one of the two intake ports. Air only flowed through the other port. Three different techniques were used in analyzing the droplet images to determine the spatially dependent particle number density. Direct counting, a filtering technique, and autocorrelation were used and compared. Further, numerical experiments were performed with the autocorrelation method to check its effectiveness for determination of particle number density.
Technical Paper

Ignition System Characteristics and Effects on Combustion for a Two-Stroke Engine

Experiments were conducted using three different ignition systems on a single cylinder, two-stroke research engine. The ignition systems included a transistorized coil ignition (TCI), a capacitive discharge ignition (CDI), and a commercially available multistrike system (JCI). The sparks produced by each ignition system were characterized using three different types of spark plugs. Spark voltage and current data along with simultaneous high speed images of the spark process in a pressurized chamber were obtained. Each ignition system was evaluated in a two-stroke research engine in terms of cyclic variability, misfire rate, and indicated power produced. In addition, ion sensing was used to detect cycle misfires and various strategies were used to improve engine performance.
Technical Paper

Emissions and Combustion Characteristics from Two Fuel Mixture Preparation Schemes in a Utility Engine

A laboratory-based fuel mixture preparation system has been developed that is capable of generating a wide range of fuel/air mixtures, including production of a premixed, prevaporized homogeneous charge, beginning with liquid gasoline fuel. This system has been developed to allow the study of the effects of fuel/air mixture preparation characteristics on engine combustion, in-cylinder pressure, and exhaust emissions. For the study to be described here, engine combustion behavior and emissions measurements were obtained for a wide range of A/F's with the fuel mixture preparation being produced in one case, by the stock carburetor operating with fixed throttle position, and the other case, with the custom-built system producing a homogeneous mixture (HM.) A four-stroke, spark-ignited, single-cylinder, overhead valve-type utility engine was used for all tests.
Technical Paper

Effects of Mixture Preparation Characteristics on Four-Stroke Utility Engine Emissions and Performance

A laboratory-based fuel mixture system capable of delivering a range of fuel/air mixtures has been used to observe the effects of differing mixture characteristics on engine combustion through measurement and analysis of incylinder pressure and exhaust emissions. Fuel air mixtures studied can be classified into four different types: 1) Completely homogeneous fuel/air mixtures, where the fuel has been vaporized and mixed with the air prior to entrance into the normal engine induction system, 2) liquid fuel that is atomized and introduced with the air to the normal engine induction system, 3) liquid fuel that is atomized, and partially prevaporized but the air/fuel charge remains stratified up to introduction to the induction system, and 4) the standard fuel metering system. All tests reported here were conducted under wide open throttle conditions. A four-stroke, spark-ignited, single-cylinder, overhead valve-type engine was used for all tests.
Technical Paper

Effects of Ignition Timing and Air-Fuel Ratio on In-Cylinder Heat Flux and Temperatures in a Four-Stroke, Air Cooled, Homogeneous Charge Engine

In-cylinder heat flux and temperature measurements were obtained in an air-cooled four-stroke utility engine for a range of air-fuel ratios. For these measurements, the magnitude of the integrated heat flux peaked at the stoichiometric air-fuel ratio, with an approximately linear decrease on either side of stoichiometric. Advancing the spark generally increased the magnitude of the integrated heat flux. Evaluation of the Brake Specific Integrated Heat Flux (BSIHF) mitigated these trends, and, the effects of changes in timing were eliminated for some operating conditions Examination of the BSIHF from the compression and expansion stroke showed behavior mimicking the full cycle BSIHF. However, the fraction of the total flux contributed by this portion of the cycle varied greatly from approximately 98% of the total to approximately 75% of the total.
Technical Paper

An Optical Sensor for Spark-Ignition Engine Combustion Analysis and Control

An in-cylinder optical sensor has been developed and tested for use in spark-ignition engine combustion analysis and control, This sensor measures the luminous emission in the near infrared region. Results of these tests show good correlation between the measured luminosity and traditional combustion parameters, such as location and magnitude of maximum cylinder pressure, and location and magnitude of maximum heat release. Engine performance indicators, such as the indicated mean effective pressure (IMEP), also can be determined accurately with the measured luminosity combined with other engine operating parameters, e.g. intake manifold pressure. In-cylinder air-fuel ratio can be determined with accuracy over an ensemble of 100 cycles.