Refine Your Search

Topic

Search Results

Technical Paper

The Effects of Jatropha-derived Biodiesel on Diesel Engine Combustion and Emission Characteristics

2012-09-10
2012-01-1637
The objective of the present research is to investigate the effects on diesel engine combustion and NOx and PM emission characteristics in case of blending the ordinary diesel fuel with biodiesel in passenger car diesel engines. Firstly, we conducted experiments to identify the combustion and emissions characteristics in a modern diesel engine complying with the EURO 4 emission standard. Then, we developed a numerical simulation model to explain and generalize biodiesel combustion phenomena in detail and generalize emission characteristics. The experimental and simulation results are useful to reduce biodiesel emissions by controlling engine operating and design parameters in the diesel engine. Engine tests were conducted and a mathematical model created to investigate the effects of 40% and 100% methyl oleate modeled fuel representing Jatropha-derived biodiesel on diesel combustion and emission characteristics, over a wide range of passenger car DI diesel engine operating conditions.
Technical Paper

The Effects of Fuel Temperature on a Direct Injection Gasoline Spray in a Constant Volume Chamber

2003-05-19
2003-01-1810
Fuel temperature in the injector of small direct injection gasoline engine is high. On some conditions it is higher than saturated temperature. Over saturated temperature spray characteristics greatly change. In order to predict in-cylinder phenomena accurately, it is important to understand spray behavior and mixture process above saturated temperature. Therefore spray shape, mixture formation process and Sauter mean radius were (SMR) measured in a constant volume chamber. And based on the measurement result initial spray boundary conditions were arranged so that spray characteristics over saturated temperature could be represented by using CFD code KIVA-3[1]. Moreover KIVA-3 code was combined with detailed chemical kinetics code Chemkin II to predict combustion products. [2] Calculated combustion process was validated with visualization of chemiluminescence. As a result, spray shape and penetration length have good agreement with measured ones for each fuel temperature.
Technical Paper

The Effect of Intake, Injection Parameters and Fuel Properties on Diesel Combustion and Emissions

2003-05-19
2003-01-1793
To improve urban air pollution, stringent emissions regulations for heavy-duty diesel engines have been proposed and will become effective in Japan, the EU, and the United States in a few years. To comply with such future regulations, it is critical to investigate the effects of intake and injection parameters and fuel properties on engine performance, efficiency and emissions characteristics, associated with the use of aftertreatment systems. An experimental study was carried out to identify such effects. In addition, the KIVA-3 code was used to gain insight into cylinder events. The results showed improvements in NOx-Smoke and BSFC trade-offs at high-pressure injection in conjunction with EGR and supercharging.
Technical Paper

Studies on Spray and Combustion Characteristics of Throttle Type Nozzle Used in a Swirl-Chamber Diesel Engine

2022-01-09
2022-32-0068
Among industrial engines, vortex chamber diesel engines are mainly used in small engines with output of less than 19 kW, and they employ an indirect injection system in which fuel is injected into a sub-chamber called a vortex chamber. The throttle-type nozzle used in swirl-chamber diesel engines is expected to change its spraying behavior depending on ambient conditions because the pressure fluctuations in the nozzle cause the needle valve to lift, and the injection amount is controlled by the amount of lift of the needle valve. In addition, the dimensions of the vortex chamber of a vortex chamber diesel engine are smaller than the spray development distance, and wall impingement of the spray is expected. In this study, spraying and combustion experiments were conducted using a constant volume chamber to understand the behavior of the spray from a throttle-type nozzle.
Technical Paper

Prediction of Soot Mass and Particle Size in a High-boosted Diesel Engine using Large Eddy Simulation

2021-09-21
2021-01-1168
Soot mass production was investigated in high-boosted diesel engine tests by changing various operating parameters. A mixed timescale subgrid model of large eddy simulation (LES) was applied to simulate the detailed mixture formation, combustion and soot formation influenced by turbulence in diesel engine combustion. The combustion model used a direct integration approach with an explicit ordinary differential equation (ODE) solver and additional parallelization by OpenMP. Soot mass production within a computation cell was determined from a phenomenological soot formation model developed by WASEDA University. The model was combined with the LES code and included the following important steps: particle inception, in which naphthalene was assumed to grow irreversibly to form soot; surface growth with the addition of C2H2; surface oxidation due to OH radicals and O2 attack; particle coagulation; and particle agglomeration.
Technical Paper

Optimization of Exhaust Pipe Injection Conditions for Diesel Oxidation

2007-10-29
2007-01-3998
In a Diesel Oxidation Catalyst (DOC) and Catalyzed Soot Filter (CSF) system, the DOC is used to oxidize additional fuel injected into the cylinder and/or exhaust pipe in order to increase the CSF's inlet temperature during soot regeneration. The catalyst's hydrocarbon (HC) oxidation performance is known to be strongly affected by the HC species present and the catalyst design. However, the engine operating conditions and additive fuel supply parameters also affect the oxidation performance of DOCs, but the effects of these variables have been insufficiently examined. Therefore, in this study, the oxidation performance of a DOC was examined in experiments in which both exhaust gas recirculation (EGR) levels and exhaust pipe injection parameters were varied. The results were then analyzed and optimal conditions were identified using modeFRONTIER.
Technical Paper

Numerical Studies on Temporal and Spatial Distribution of Equivalence Ratio in Diesel Combustion Using Large Eddy Simulation

2020-01-24
2019-32-0599
To identify ways of achieving good mixture formation and heat release in diesel spray combustion, we have performed Large Eddy Simulation (LES) using a detailed chemical reaction mechanism to study the temporal and spatial distribution of the local equivalence ratios and heat release rate. Here we characterize the effect of the fuel injection rate profile on these processes in the combustion chamber of a diesel engine. Two injection rate profiles are considered: a standard (STD) profile, which is a typical modern common rail injection profile, and the inverse delta (IVD) profile, which has the potential to suppress rich mixture formation in the spray tip region. Experimental data indicate that the formation of such mixtures may extend the duration of the late combustion period and thus reduce thermal efficiency.
Technical Paper

Numerical Simulation Accounting for the Finite-Rate Elementary Chemical Reactions for Computing Diesel Combustion Process

2005-09-11
2005-24-051
To facilitate research and development of diesel engines, the universal numerical code for predicting diesel combustion has been favored for the past decade. In this paper, the finite-rate elementary chemical reactions, sometimes called the detailed chemical reactions, are introduced into the KIVA-3V code through the use of the Partially Stirred Reactor (PaSR) model with the KH-RT break-up, modified collision and velocity interpolation models. Outcomes were such that the predicted pressure histories have favorable agreements with the measurements of single and double injection cases in the diesel engine for use in passenger cars. Thus, it is demonstrated that the present model will be a useful tool for predicting ignition and combustion characteristics encountered in the cylinder.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (Second Report): Prediction of Combustion with High Speed Calculation Diesel Combustion Model

2011-08-30
2011-01-2044
This paper describes the development of a High Speed Calculation Diesel Combustion Model that predicts combustion-related behaviors of diesel engines from passenger cars. Its output is dependent on the engine's operating parameters and on input from on-board pressure and temperature sensors. The model was found to be capable of predicting the engine's in-cylinder pressure, rate of heat release, and NOx emissions with a high degree of accuracy under a wide range of operating conditions at a reasonable computational cost. The construction of this model represents an important preliminary step towards the development of an integrated Model Based Control system for controlling combustion in diesel engines used in passenger cars.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (First Report): The construction and validation of a model of the Air Intake System

2011-08-30
2011-01-2066
Model based control design is an important method for optimizing engine operating conditions so as to simultaneously improve engines' thermal efficiency and emission profiles. Modeling of intake system that includes an intake throttle valve, an EGR valve and a variable geometry turbocharger was constructed based on conservation laws combined with maps. Calculated results were examined the predictive accuracy of fresh charge mass flow, EGR rate and boost pressure.
Technical Paper

Modeling and Controlling Active Regeneration of a Diesel Particulate Filter

2020-09-15
2020-01-2176
Heavy soot deposition in wall-flow type diesel particulate filters reduces engine output and fuel efficiency. This necessitates forced regeneration to oxidize soot via exothermic reactions in a diesel oxidation catalyst upstream of the Diesel Particulate Filter (DPF). Soot loading in the wall of the DPF during forced regeneration causes much greater pressure drops than cake deposition, which is undesirable because high pressure drops reduce engine performance. We show that the description of soot deposition using a DPF model is improved by using a shrinking sphere soot oxidation sub-model. We then use this revised model to analyze cake deposition during forced regeneration, and to study the effects of varying the forced regeneration temperature and duration on the local soot reaction rate and soot mass distribution in the radial and longitudinal directions of the DPF channels during forced regeneration.
Technical Paper

Mixture formation and combustion characteristics of directly injected LPG spray

2003-05-19
2003-01-1917
It has been recognized that alternative fuels such as liquid petroleum gas (LPG) has less polluting combustion characteristics than diesel fuel. Direct-injection stratified-charge combustion LPG engines with spark-ignition can potentially replace conventional diesel engines by achieving a more efficient combustion with less pollution. However, there are many unknowns regarding LPG spray mixture formation and combustion in the engine cylinder thus making the development of high-efficiency LPG engines difficult. In this study, LPG was injected into a high pressure and temperature atmosphere inside a constant volume chamber to reproduce the stratification processes in the engine cylinder. The spray was made to hit an impingement wall with a similar profile as a piston bowl. Spray images were taken using the Schlieren and laser induced fluorescence (LIF) method to analyze spray penetration and evaporation characteristics.
Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Technical Paper

Machine Learning Application to Predict Turbocharger Performance under Steady-State and Transient Conditions

2021-09-05
2021-24-0029
Performance predictions of advanced turbocharged engines are becoming difficult because conventional engine models are built using performance map data of turbochargers with a proportional integral derivative (PID) controller. Improving prediction capabilities under transient test cycles or real driving conditions is a challenging task. This study applies a machine learning technique to predict turbocharger performances with high accuracy under steady-state and transient conditions. The manipulated signals of engine speed and torque created based on Compressed High-Intensity Radiated Pulse (Chirp signal) and Amplitude-modulated Pseudo-Random Binary Signal (APRBS) are used as inputs to the engine testbed. Data from the engine experiments are used as training data for the AI-based turbocharger model. High prediction accuracy of the AI turbocharger model is achieved with the co-efficient of determination in the model, and cross-validation results are higher than 0.8.
Technical Paper

Influence of Diesel Post Injection Timing on HC Emissions and Catalytic Oxidation Performance

2006-10-16
2006-01-3442
For diesel emission control systems containing a Diesel Oxidation Catalyst (DOC) and a Catalyzed Soot Filter (CSF) the DOC is used to oxidize the additional fuel injected into the cylinder and/or the exhaust pipe for the purpose of increasing the CSF inlet temperature during the soot regeneration. Hydrocarbon (HC) oxidation performance of the DOC is affected by HC species as well as a catalyst design, i.e., precious metal species, support materials and additives. How engine-out HC species vary as a function of fuel supply conditions is not well understood. In addition, the relationship between catalyst design and oxidation activity of different hydrocarbon species requires further study. In this study, diesel fuel was supplied by in-cylinder, post injection and exhaust HC species were measured by a gas chromatograph-mass spectrometry (GC-MS) and a gas analyzer. The post injection timing was set to either 73°, 88° or 98° ATDC(after top dead center).
Technical Paper

Improvement of Combustion and Exhaust Gas Emissions in a Passenger Car Diesel Engine by Modification of Combustion Chamber Design

2006-10-16
2006-01-3435
Three types of combustion chamber configurations (Types A, B, and C) with compression ratio lower than that of the baseline were tested for improved performance and exhaust gas emissions from an inline-four-cylinder 1.7-liter common-rail diesel engine manufactured for use with passenger cars. First, three combustion chambers were examined numerically using CFD code. Second, engine tests were conducted by using Type B combustion chamber, which is expected to have the best performance and exhaust gas emissions of all. As a result, 80% of NOx emissions at both low and medium loads at 1500 rpm, the engine speed used frequently in the actual city driving, improved with nearly no degradation in smoke emissions and brake thermal efficiency. It was shown that a large amount of cooled EGR enables NOx-free combustion with long ignition delay.
Technical Paper

Ignition and Combustion Control of Diesel HCCI

2005-05-11
2005-01-2132
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions in diesel engine. In general, high octane number fuels (gasoline components or gaseous fuels) are used for HCCI operation, because these fuels briefly form lean homogeneous mixture because of long ignition delay and high volatility. However, it is necessary to improve injection systems, when these high octane number fuels are used in diesel engine. In addition, the difficulty of controlling auto-ignition timing must be resolved. On the other hand, HCCI using diesel fuel (diesel HCCI) also needs ignition control, because diesel fuel which has a low octane number causes the early ignition before TDC. The purpose of this study is the ignition and combustion control of diesel HCCI. The effects of parameters (injection timing, injection pressure, internal/external EGR, boost pressure, and variable valve timing (VVT)) on the ignition timing of diesel HCCI were investigated.
Technical Paper

Experimental and Simulation Analysis of Spray and Combustion Characteristics in a Swirl-Chamber Diesel Engine

2022-08-30
2022-01-1049
A swirl-chamber diesel engine has an indirect injection system in which fuel is injected into a pre-chamber called the swirl-chamber that is separated from the main chamber. Indirect fuel injection systems can be directly mechanically controlled by the camshaft, which is cheaper than electronic control. For these reasons, they are used in diverse industrial applications and automobiles. However, optimization of the swirl-chamber shape and performance tests have been mainly experimental, and there has been insufficient verification of the accuracy of simulations. Thus, we have attempted to verify simulations using a rapid compression and expansion machine that can reproduce the combustion in one engine cycle, with a chamber like a swirl chamber in the cylinder head to visualize the behavior of evaporative sprays and the combustion process. In this study, the authors focused on the wall impingement of the fuel spray and took photos of its liquid phase and ignition.
Technical Paper

Experimental and 3D-CFD Analysis of Synthetic Fuel Properties on Combustion and Exhaust Gas Emission Characteristics in Heavy-Duty Diesel Engines

2023-08-28
2023-24-0052
Synthetic fuels can significantly improve the combustion and emission characteristics of heavy-duty diesel engines toward decarbonizing heavy-duty propulsion systems. This work analyzes the effects of engine operating conditions and synthetic fuel properties on spray, combustion, and emissions (soot, NOx) using a supercharging single-cylinder engine experiment and KIVA-4 code combined with CHEMKIN-II and in-house phenomenological soot model. The blended fuel ratio is fixed at 80% diesel and 20% n-paraffin by volume (hereafter DP). Diesel, DP1 (diesel with n-pentane C5H12), DP2 (diesel with n-hexane C6H14), and DP3 (diesel with n-heptane C7H16) are used in engine-like-condition constant volume chamber (CVC) and engine experiments. Boosted engine experiments (1080 rpm, common-rail injection pressure 160 MPa, multi-pulse injection) are performed using the same DP fuel groups under various main injection timings, pulse-injection intervals, and EGR = 0-40%.
Technical Paper

Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine with Common Rail Fuel Injection System

2003-10-27
2003-01-3158
In this study, we selected four unregulated emissions species, formaldehyde, benzene, 1,3-butadiene and benzo[a]pyrene to research the emission characteristics of these unregulated components experimentally. The engine used was a water-cooled, 8-liter, 6-cylinder, 4-stroke-cycle, turbocharged DI diesel engine with a common rail fuel injection system manufactured for the use of medium-duty trucks, and the fuel used was JIS second-class light gas oil, which is commercially available as diesel fuel. The results of experiments indicate as follows: formaldehyde tends to be emitted under the low load condition, while 1,3-butadiene is emitted at the low engine speed. This is believed to be because 1,3-butadiene decomposes in a short time, and the exhaust gas stays much longer in a cylinder under the low speed condition than under the high engine speed one. Benzene is emitted under the low load condition, as it is easily oxidized in high temperature.
X