Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effects of Jatropha-derived Biodiesel on Diesel Engine Combustion and Emission Characteristics

2012-09-10
2012-01-1637
The objective of the present research is to investigate the effects on diesel engine combustion and NOx and PM emission characteristics in case of blending the ordinary diesel fuel with biodiesel in passenger car diesel engines. Firstly, we conducted experiments to identify the combustion and emissions characteristics in a modern diesel engine complying with the EURO 4 emission standard. Then, we developed a numerical simulation model to explain and generalize biodiesel combustion phenomena in detail and generalize emission characteristics. The experimental and simulation results are useful to reduce biodiesel emissions by controlling engine operating and design parameters in the diesel engine. Engine tests were conducted and a mathematical model created to investigate the effects of 40% and 100% methyl oleate modeled fuel representing Jatropha-derived biodiesel on diesel combustion and emission characteristics, over a wide range of passenger car DI diesel engine operating conditions.
Technical Paper

Simulating Exhaust Emissions Characteristics and Their Improvements in a Glow-Assisted DI Methanol Engine Using Combustion Models Combined with Detailed Kinetics

1997-05-01
971598
An experimental and numerical study has been conducted on the emission and reduction of HCHO (formaldehyde) and other pollutants formed in the cylinder of a direct-injection diesel engine fueled by methanol. Engine tests were performed under a variety of intake conditions including throttling, heating, and EGR (exhaust gas recirculation) for the purpose of improving these emissions by changing gas compositions and combustion temperatures in the cylinder. Moreover, a detailed kinetics model was developed and applied to methanol combustion to investigate HCHO formation and the reduction mechanism influenced by associated elementary reactions and in-cylinder mixing.
Technical Paper

Reaction Path Analysis and Modeling of NOx Reduction in a Cu-chabazite SCR Catalyst Considering Cu Redox Chemistry and Reversible Hydrolysis of Cu Sites

2020-09-15
2020-01-2181
In this study, reaction path analysis and modeling of NOx reduction phenomena by selective catalytic reduction (SCR) with NH3 over a Cu-chabazite catalyst were conducted considering changes in the valence state of Cu sites and local structure due to differences in ligands to the Cu sites. The analysis showed that in the Cu-chabazite catalyst, NOx was mainly reduced by adsorbed NH3 on divalent Cu sites accompanied by a change in valence state of Cu from divalent to monovalent. It is known that the activation energy of NOx reduction on a Cu-chabazite catalyst changes between low temperatures ≤ 200 °C and mid to high temperatures ≥ 300 °C. To express this phenomenon, a reversible hydrolysis reaction based on the difference in coordination state of hydroxyl groups (OH−) to Cu sites at low and high temperatures was introduced into the model.
Technical Paper

Reaction Analysis and Modeling of Fast SCR in a Cu-Chabazite SCR Catalyst Considering Generation and Decomposition of Ammonium Nitrate

2021-09-05
2021-24-0073
In this study, reaction path analysis and modeling of NOx reduction phenomena by fast SCR reaction on a Cu-chabazite catalyst were conducted, considering the formation and decomposition of ammonium nitrate (NH4NO3). White crystals of NH4NO3 decompose at temperatures < 200 °C. Thus, the reaction behavior changes at 200 °C under fast SCR reaction conditions. NH4NO3 formation can occur on both Cu sites and Brønsted acid sites, which are active sites for NOx reduction in the Cu-chabazite catalyst, but it is unclear where NH4NO3 accumulates on the catalyst. Analyses using catalyst test pieces with different active sites were performed to estimate this accumulation. The results suggested that NH4NO3 accumulation does not depend on the presence of either Cu sites or Brønsted acid sites. Therefore, it is assumed that NH4NO3 can be accumulated everywhere on the catalyst, including on the zeolite framework. This phenomenon was included in the model as formation/accumulation sites S'.
Technical Paper

Prediction of Soot Mass and Particle Size in a High-boosted Diesel Engine using Large Eddy Simulation

2021-09-21
2021-01-1168
Soot mass production was investigated in high-boosted diesel engine tests by changing various operating parameters. A mixed timescale subgrid model of large eddy simulation (LES) was applied to simulate the detailed mixture formation, combustion and soot formation influenced by turbulence in diesel engine combustion. The combustion model used a direct integration approach with an explicit ordinary differential equation (ODE) solver and additional parallelization by OpenMP. Soot mass production within a computation cell was determined from a phenomenological soot formation model developed by WASEDA University. The model was combined with the LES code and included the following important steps: particle inception, in which naphthalene was assumed to grow irreversibly to form soot; surface growth with the addition of C2H2; surface oxidation due to OH radicals and O2 attack; particle coagulation; and particle agglomeration.
Technical Paper

Predicting Exhaust Emissions in a Glow-Assisted DI Methanol Engine Using a Combustion Model Combined with Full Kinetics

1996-10-01
961935
A numerical model has been developed to predict the formation of NOx and formaldehyde in the combustion and post-combustion zones of a methanol DI engine. For this purpose, a methanol-air mixture model combined with a full kinetics model has been introduced, taking into account 39 species with their 157 related elementary reactions. Through these kinetic simulations, a concept is proposed for optimizing methanol combustion and reducing exhaust emissions.
Technical Paper

Numerical Optimization of Parameters to Improve Thermal Efficiency of a Spark-Ignited Natural Gas Engine

2015-09-01
2015-01-1884
Natural gas is a promising alternative fuel for internal combustion engines because of its clean combustion characteristics and abundant reserves. However, it has several disadvantages due to its low energy density and low thermal efficiency at low loads. Thus, to assist efforts to improve the thermal efficiency of spark-ignited (SI) engines operating on natural gas and to minimize test procedures, a numerical simulation model was developed to predict and optimize the performance of a turbocharged test engine, considering flame propagation, occurrence of knock and ignition timing. The numerical results correlate well with empirical data, and show that increasing compression ratios and retarding the intake valve closing (IVC) timing relative to selected baseline conditions could effectively improve thermal efficiency. In addition, employing moderate EGR ratios is also effective for avoiding knock.
Technical Paper

Numerical Methods on VVA and VCR Concepts for Fuel Economy Improvement of a Commercial CNG Truck

2020-09-15
2020-01-2083
Natural gas has been used in spark-ignition (SI) engines of natural gas vehicles (NGVs) due to its resource availability and stable price compared to gasoline. It has the potential to reduce carbon monoxide emissions from the SI engines due to its high hydrogen-to-carbon ratio. However, short running distance is an issue of the NGVs. In this work, methodologies to improve the fuel economy of a heavy-duty commercial truck under the Japanese Heavy-Duty Driving Cycle (JE05) is proposed by numerical 1D-CFD modeling. The main objective is a comparative analysis to find an optimal fuel economy under three variable mechanisms, variable valve timing (VVT), variable valve actuation (VVA), and variable compression ratio (VCR). Experimental data are taken from a six-cylinder turbocharged SI engine fueled by city gas 13A. The 9.83 L production engine is a CR11 type with a multi-point injection system operated under a stoichiometric mixture.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (Second Report): Prediction of Combustion with High Speed Calculation Diesel Combustion Model

2011-08-30
2011-01-2044
This paper describes the development of a High Speed Calculation Diesel Combustion Model that predicts combustion-related behaviors of diesel engines from passenger cars. Its output is dependent on the engine's operating parameters and on input from on-board pressure and temperature sensors. The model was found to be capable of predicting the engine's in-cylinder pressure, rate of heat release, and NOx emissions with a high degree of accuracy under a wide range of operating conditions at a reasonable computational cost. The construction of this model represents an important preliminary step towards the development of an integrated Model Based Control system for controlling combustion in diesel engines used in passenger cars.
Technical Paper

Modeling and Controlling Active Regeneration of a Diesel Particulate Filter

2020-09-15
2020-01-2176
Heavy soot deposition in wall-flow type diesel particulate filters reduces engine output and fuel efficiency. This necessitates forced regeneration to oxidize soot via exothermic reactions in a diesel oxidation catalyst upstream of the Diesel Particulate Filter (DPF). Soot loading in the wall of the DPF during forced regeneration causes much greater pressure drops than cake deposition, which is undesirable because high pressure drops reduce engine performance. We show that the description of soot deposition using a DPF model is improved by using a shrinking sphere soot oxidation sub-model. We then use this revised model to analyze cake deposition during forced regeneration, and to study the effects of varying the forced regeneration temperature and duration on the local soot reaction rate and soot mass distribution in the radial and longitudinal directions of the DPF channels during forced regeneration.
Technical Paper

Modeling Three-Way Catalyst Converters During Cold Starts And Potential Improvements

2019-12-19
2019-01-2326
Three-way catalyst (TWC) converters are often used to purify toxic substances contained in exhaust emissions from gasoline engines. However, a large amount of CO, NOx and THC may be emitted before the TWC reaches its light-off temperature during a cold start. In this work, a numerical model was developed for studying the purification performance of a close-coupled TWC converter during the cold start period. The TWC model was built using axisuite, commercial software by Exothermia S.A. Model gas experiments were designed for calibrating the chemical reaction scheme and corresponding reaction rate parameters in the TWC model. The TWC model was able to simulate the purification performance of CO, NOx and THC under both lean and rich air-fuel equivalence ratios (λ) for different conditions. The light-off temperature and oxygen storage capacity (OSC) behavior were also successfully validated in the model. Vehicle tests were conducted on a chassis dynamometer to verify the TWC model.
Technical Paper

Influence of Diesel Post Injection Timing on HC Emissions and Catalytic Oxidation Performance

2006-10-16
2006-01-3442
For diesel emission control systems containing a Diesel Oxidation Catalyst (DOC) and a Catalyzed Soot Filter (CSF) the DOC is used to oxidize the additional fuel injected into the cylinder and/or the exhaust pipe for the purpose of increasing the CSF inlet temperature during the soot regeneration. Hydrocarbon (HC) oxidation performance of the DOC is affected by HC species as well as a catalyst design, i.e., precious metal species, support materials and additives. How engine-out HC species vary as a function of fuel supply conditions is not well understood. In addition, the relationship between catalyst design and oxidation activity of different hydrocarbon species requires further study. In this study, diesel fuel was supplied by in-cylinder, post injection and exhaust HC species were measured by a gas chromatograph-mass spectrometry (GC-MS) and a gas analyzer. The post injection timing was set to either 73°, 88° or 98° ATDC(after top dead center).
Technical Paper

Improvement of Combustion in a Dual Fuel Natural Gas Engine with Half the Number of Cylinders

2003-05-19
2003-01-1938
A dual fuel natural gas diesel engine suffers from remarkably lower thermal efficiency and higher THC, CO emissions at lower load because of its lower burned mass fraction caused by the lean pre-mixture. To overcome this inevitable disadvantage at lower load, two methods of reducing the number of operating cylinders were examined. One method was to use the two cylinders operation while the second one was to use the quasi-two cylinders operation. As a result, it was found that the unburned hydrocarbons and CO emissions could be favorably reduced with the improvement of thermal efficiency by reducing the number of cylinders to half for a dual fuel natural gas diesel engine. Moreover, it was also found that the quasi-two cylinders operation could improve the torque fluctuation more compared to the two cylinders operation.
Technical Paper

Improvement of Combustion and Exhaust Gas Emissions in a Passenger Car Diesel Engine by Modification of Combustion Chamber Design

2006-10-16
2006-01-3435
Three types of combustion chamber configurations (Types A, B, and C) with compression ratio lower than that of the baseline were tested for improved performance and exhaust gas emissions from an inline-four-cylinder 1.7-liter common-rail diesel engine manufactured for use with passenger cars. First, three combustion chambers were examined numerically using CFD code. Second, engine tests were conducted by using Type B combustion chamber, which is expected to have the best performance and exhaust gas emissions of all. As a result, 80% of NOx emissions at both low and medium loads at 1500 rpm, the engine speed used frequently in the actual city driving, improved with nearly no degradation in smoke emissions and brake thermal efficiency. It was shown that a large amount of cooled EGR enables NOx-free combustion with long ignition delay.
Technical Paper

Ignition and Combustion Control of Diesel HCCI

2005-05-11
2005-01-2132
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions in diesel engine. In general, high octane number fuels (gasoline components or gaseous fuels) are used for HCCI operation, because these fuels briefly form lean homogeneous mixture because of long ignition delay and high volatility. However, it is necessary to improve injection systems, when these high octane number fuels are used in diesel engine. In addition, the difficulty of controlling auto-ignition timing must be resolved. On the other hand, HCCI using diesel fuel (diesel HCCI) also needs ignition control, because diesel fuel which has a low octane number causes the early ignition before TDC. The purpose of this study is the ignition and combustion control of diesel HCCI. The effects of parameters (injection timing, injection pressure, internal/external EGR, boost pressure, and variable valve timing (VVT)) on the ignition timing of diesel HCCI were investigated.
Journal Article

Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement

2015-11-17
2015-32-0711
Primary work is to investigate premixed laminar flame propagation in a constant volume chamber of iso-octane/air combustion. Experimental and numerical results are investigated by comparing flame front displacements under lean to rich conditions. As the laminar flame depends on equivalence ratio, temperature, and pressure conditions, it is a main property for chemical reaction mechanism validation. Firstly, one-dimensional laminar flame burning velocities are predicted in order to validate a reduced chemical reaction mechanism. A set of laminar burning velocities with pressure, temperature, and mixture equivalence ratio dependences are combined into a 3D-CFD calculation to compare the predicted flame front displacements with that of experiments. It is found that the reaction mechanism is well validated under the coupled 1D-3D combustion calculations. Next, lean experiments are operated in a SI engine by boosting intake pressure to maintain high efficiency without output power penalty.
Technical Paper

Experimental and Numerical Studies on Soot Formation in Fuel Rich Mixture

2003-05-19
2003-01-1850
Experimental and numerical studies are conducted on the formation of soot and Polycyclic Aromatic Hydrocarbons (PAHs), regarded as precursors of soot, during the combustion of fuel-rich homogeneous n-heptane mixtures. In-cylinder gases are sampled directly through a high-speed solenoid valve in engine tests, to be analyzed by GC/MS for qualifying PAHs. Smoke concentration is also measured. A numerical study is carried out by using a zero-dimensional model combined with detailed chemical kinetics. The experiments and computations show that PAHs can be predicted qualitatively by means of the present kinetic model.
Technical Paper

Experimental and Numerical Studies on Particulate Matter Formed in Fuel Rich Mixture

2003-10-27
2003-01-3175
Experimental and numerical studies on PAHs (Polycyclic Aromatic Hydrocarbons) and PM (Particulate Matters) formed in the fuel rich mixture have been conducted. In the experiment, neat n-heptane and n-heptane with benzene 25 % by weight were chosen as test fuels. In-cylinder gases produced by the fuel-rich HCCI (Homogeneous Charge Compression Ignition) combustion were directly sampled and analyzed by the use of GC/MS (Gas Chromatograph/Mass Spectro- metry), and PM emission was also measured by PM sampling system to reveal characteristics of PM formation. Numerical study has been also carried out using a zero dimensional combustion model combined with detailed chemistry. Furthermore, simple surface growth of soot particles was integrated into a detailed chemical kinetic model, and validated with the experimental data.
Technical Paper

Experimental and 3D-CFD Analysis of Synthetic Fuel Properties on Combustion and Exhaust Gas Emission Characteristics in Heavy-Duty Diesel Engines

2023-08-28
2023-24-0052
Synthetic fuels can significantly improve the combustion and emission characteristics of heavy-duty diesel engines toward decarbonizing heavy-duty propulsion systems. This work analyzes the effects of engine operating conditions and synthetic fuel properties on spray, combustion, and emissions (soot, NOx) using a supercharging single-cylinder engine experiment and KIVA-4 code combined with CHEMKIN-II and in-house phenomenological soot model. The blended fuel ratio is fixed at 80% diesel and 20% n-paraffin by volume (hereafter DP). Diesel, DP1 (diesel with n-pentane C5H12), DP2 (diesel with n-hexane C6H14), and DP3 (diesel with n-heptane C7H16) are used in engine-like-condition constant volume chamber (CVC) and engine experiments. Boosted engine experiments (1080 rpm, common-rail injection pressure 160 MPa, multi-pulse injection) are performed using the same DP fuel groups under various main injection timings, pulse-injection intervals, and EGR = 0-40%.
Technical Paper

Exhaust Purification Performance Enhancement by Early Activation of Three Way Catalysts for Gasoline Engines Used in Hybrid Electric Vehicles

2019-09-09
2019-24-0148
Three-way catalyst (TWC) converters are used to remove harmful substances (e.g., carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC)) emitted from gasoline engines. However, a large amount of emissions could be emitted before the TWC reaches its light-off temperature during a cold start. For hybrid electric vehicles (HEVs) powered by gasoline engines, the emission purification performance by TWC converters unfortunately deteriorates because of mode switching from engine to battery and vice versa, which can repeatedly generate cold start conditions for the TWCs. In this study, aiming to reduce emissions from series HEVs by early activation of TWCs, numerical simulations and experiments are carried out. An HEV is tested on a chassis dynamometer in the Worldwide Light-duty Test Cycle (WLTC) mode. The upstream and downstream gas conditions of the close-coupled catalyst converter are measured.
X