Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Unsteady Aerodynamic Properties of a Vehicle Model and their Effect on Driver and Vehicle under Side Wind Conditions

2011-04-12
2011-01-0154
In this paper the effect of aerodynamic modifications that influence the unsteady aerodynamic properties of a vehicle on the response of the closed loop system driver-vehicle under side wind conditions is investigated. In today's aerodynamic optimization the side wind sensitivity of a vehicle is determined from steady state values measured in the wind tunnel. There, the vehicle is rotated with respect to the wind tunnel flow to create an angle of attack. In this approach however, the gustiness that is inherent in natural wind is not reproduced. Further, unsteady forces and moments acting on the vehicle are not measured due to the limited dynamic response of the commonly used wind tunnel balances. Therefore, a new method is introduced, overcoming the shortcomings of the current steady state approach. The method consists of the reproduction of the properties of natural stochastic crosswind that are essential for the determination of the side wind sensitivity of a vehicle.
Technical Paper

The New Interchangeable Three-belt System in the IVK Full-Scale Wind Tunnel of University of Stuttgart: Design and First Results

2016-04-05
2016-01-1581
With its recent wind tunnel upgrade, FKFS installed the first interchangeable three-belt / five-belt-system (FKFS first®) in a full scale automotive wind tunnel. With the five-belt system, which today is a state-of-the-art ground simulation technique, the system is ideally suited for production vehicle development work. The five-belt system offers high flexibility, quick access to the underfloor and vehicle fixation, and setting the vehicle’s ride height by the restraint device. The first results of the five-belt system have already been published in SAE 2015-01-1557 [1]. The three-belt system on the other hand, offers a much more sophisticated ground simulation technique which is necessary especially for sports and racing cars. For such vehicles with very low ground clearances, it is important to have a more accurate ground simulation, in order to capture the same aerodynamic modes of action and response as on the road.
Technical Paper

The New 5-Belt Road Simulation System of the IVK Wind Tunnels - Design and First Results

2003-03-03
2003-01-0429
In 2001 the FKFS (Research Institute of Automotive Engineering and Vehicle Engines, Stuttgart) took into operation state-of-the-art 5-belt systems for road simulation in the 22.45m2-IVK automotive wind tunnel and in the 1.65m2-IVK model wind tunnel. In these systems, a narrow belt running between the vehicles' wheels is fitted with 4 balance-mounted wheel rotation drives and a vehicle restraint system. The FKFS opted for MTS steel belt technology due to its small size, low power requirements and excellent tracking stability. Due to air bearings below the belt, the flat-belt wheel rotation units in the full-scale wind tunnel permit aerodynamic force measurements at full wheel load (8 kN) up to 70 m/s. In combination with the hydrostatic suspension of the units, integrated longitudinal force transducers permit realistic measurements of the wheels' rolling resistance. In the model wind tunnel FKFS wheel rotation units with Poly-V belts are used with small wheel loads up to 80 m/s.
Technical Paper

The Influence of Rotating Wheels on Total Road Load

2007-04-16
2007-01-1047
Within in the scope of a road load investigation project at FKFS, the influence of rotating wheels on the road load of a passenger car was investigated. For this purpose an approach was developed to measure the ventilation resistance of a spinning wheel. This approach enables a comparison of different wheel sizes and rim designs. Together with aerodynamic drag measurements in the wind tunnel it is possible to evaluate different wheel configurations with respect to their contribution to the road load. The measuring approach and results of performed measurements are shown in this paper.
Technical Paper

The Influence of Ground Simulation and Wheel Rotation on Aerodynamic Drag Optimization - Potential for Reducing Fuel Consumption

1996-02-01
960672
In automobile development, wind tunnel measurements are used to optimize fuel consumption and the vehicle's road behavior. The classic measuring technique is based on a stationary vehicle set up in the wind tunnel with stationary wheels. Relative movement between vehicle and road surface is therefore ignored. In more recent studies, measurements have been taken with improved ground simulation. For example, a belt is used instead of the stationary wind tunnel floor and the car wheels rotate. Ground simulation using a belt and rotating wheels generally leads to a reduction in flow angularity at the front wheels, in the same way as blocking the cooling air flow, whereby, as a matter of fact, the aerodynamic drag is reduced. Analogous air flow angle correlations can be established for the effect of underfloor panels.
Journal Article

The Effect of High Turbulence Intensities on Surface Pressure Fluctuations and Wake Structures of a Vehicle Model

2009-04-20
2009-01-0001
The unsteady environment road vehicles are exposed to is subject of many investigations that are currently made. Yet, the approaching flow is only one aspect of unsteady forces acting on the vehicle. Unsteady wake structures also lead to time-varying surface pressures and consequently fluctuating forces even in steady and low turbulent flows. However, little is known about the influence of realistic flow conditions, i.e. as found on road, on the unsteady surface pressures and wake structures of a vehicle. Therefore, to derive a deeper understanding of the unsteady aerodynamic properties of a vehicle this paper presents results of measurements conducted on a vehicle body both in smooth and turbulent flow conditions in the IVK model scale wind tunnel. Unsteady surface pressure measurements in the area where separation occurs and the base of the vehicle were made together with time accurate total pressure measurements in the wake.
Technical Paper

Road Load Determination Based on Driving-Torque-Measurement

2003-03-03
2003-01-0933
This paper introduces a driving-torque measurement method for the determination of vehicle road load and its components. To increase the accuracy, the torque measurements are combined with rolling resistance measurements performed with a specially developed trailer. This method is a strictly experimental approach and does not use any mathematical models. The experimental techniques are described as well as the proceedings to compare test stand and road measurements. The results that are shown prove that this method is suitable for the investigation of single road load components. Furthermore, the comparison of different rolling resistance measurement devices shows the potential of the measurement trailer and the necessity to perform rolling resistance measurements on real road surfaces and not solely on test stands.
Journal Article

Numerical Comparison of Rolling Road Systems

2011-06-09
2011-37-0017
The entire automotive industry is moving towards lower CO₂ emissions and higher energy efficiency. Especially for higher driving speeds this can be achieved by minimizing aerodynamic drag. Additionally, aerodynamic downforce is essential to maintain or even improve the handling performance of a vehicle. In order to optimize the vehicle's aerodynamic efficiency in wind tunnel tests, the boundary conditions of a vehicle driving on a road must be simulated properly. Particularly for optimizing the underbody region of a vehicle, ground simulation is an important issue in every wind tunnel. Today rolling road systems featuring one or more moving belts on the wind tunnel floor are a standard tool to simulate the complex boundary condition of a vehicle driving on the road. But generally the technical effort to measure aerodynamic forces accurately increases with improvement of the aerodynamic ground simulation.
Journal Article

New FKFS Technology at the Full-Scale Aeroacoustic Wind Tunnel of University of Stuttgart

2015-04-14
2015-01-1557
For many years FKFS has operated the full-scale aeroacoustic wind tunnel of University of Stuttgart. To keep this wind tunnel as one of the most modern ones of its kind, it has again been upgraded significantly. The upgrade improved the aerodynamic as well as the aeroacoustic performance and accelerated the operational processes. Additionally, new innovative features have significantly enlarged the test capabilities. A new patented, modular belt system (FKFS first®) allows high performance measurements for race cars in a 3-belt mode as well as efficient measurements for production vehicle development in a 5-belt mode. The belt system is accompanied by a new, larger turntable and a new under-floor balance which enables high-accuracy measurements of forces and moments also for a high resolution in time. For the elimination of parasitic forces generated at the wheel drive units, a specific correction procedure has been implemented, which is patented, too (FKFS pace®).
Technical Paper

Model Scale Based Process for the Development of Aerodynamic Tire Characteristics

2014-04-01
2014-01-0585
The geometric shape of the tires can have a large influence on the aerodynamic drag of a passenger car as it has been shown already in different publications like for example [1, 2, 3]. However, to optimize the shape of a tire, nowadays quite some effort is needed in terms of wind tunnel time and costs for prototype tires. In this paper an approach to optimize the tire's shape in model scale is described, which can help to reduce both development time and costs. The first step in the development of this method was to verify that the aerodynamic effects of the tire geometry in model scale are comparable to full scale tests. This was achieved by measuring different production tires in full scale and also by measuring the quarter scale version of the same tires. The only difference between the original and the model scale tires was that the scaled tires were not deformable. The results show that the difference between two sets of tires is comparable in full scale and in quarter scale.
Technical Paper

Investigations in a Cooling Air Flow System under the Influence of Road Simulation

2008-04-14
2008-01-0796
This paper presents some recent results concerning the generation and minimization of cooling air drag, achieved in an integrated approach of numerical and experimental investigations. The baseline configuration of a production cars' cooling air flow system is analyzed. The analysis of the created drag shows, that most of the force changes due to the cooling air flow appear in the front region of the vehicle. However, the forces generated by heat exchangers are only a small share of the total changes. Additional drag is generated for example by the front wheels and by the components of the underhood compartment. The investigation of the influence of the vehicle rear end shape on the aerodynamics of the cooling air flow system shows, that two similar cars with different rear end shapes (notchback and squareback) can feature different cooling air drag values.
Journal Article

Investigation of Aerodynamic Drag in Turbulent Flow Conditions

2016-04-05
2016-01-1605
In this paper the influence of different turbulent flow conditions on the aerodynamic drag of a quarter scale model with notchback and estate back rear ends is investigated. FKFS swing® (Side Wind Generator) is used to generate a turbulent flow field in the test section of the IVK model scale wind tunnel. In order to investigate the increase in drag with increasing yaw, a steady state yaw sweep is performed for both vehicle models. The shape of the drag curves vary for each vehicle model. The notchback model shows a more pronounced drag minimum at 0° yaw angle and experiences a more severe increase in drag at increasing yaw when compared to the estate back model. Unsteady time averaged aerodynamic drag values are obtained at two flow situations with different turbulent length scales, turbulence intensities, and yaw angle amplitudes. While the first one is representing light wind, the second one is recreating the presence of strong gusty wind.
Technical Paper

Introduction of the AeroSUV-A New Generic SUV Model for Aerodynamic Research

2019-04-02
2019-01-0646
Since the introduction of the DrivAer model, an increasing amount of aerodynamic research and CAE method development activities are based on this detailed generic car body. Due to the Open Access nature of the model, it has not only been quickly adopted by academia but also by several automotive OEMs and CAE software developers. The DrivAer has delivered high quality experimental data to permit validation of existing aerodynamic CAE capabilities and to accelerate the development of new sophisticated numerical methods. Within the last decades, the registration number of SUV, especially in Europe, has increased significantly. Among other things, a large cross-sectional area, an increased ground clearance and larger wheels characterize this kind of vehicle. The DrivAer is not capable of depicting this vehicle category. Therefore, there is a demand for an expansion of this generic vehicle concept.
Technical Paper

Further Investigations on Gradient Effects

2004-03-08
2004-01-0670
In automotive wind tunnels with modern road simulation installations boundary layer pre-suction is a widely-used technique for boundary layer control. The consequence of boundary layer pre-suction is an additional pressure gradient in front of the model. In order to investigate the effects of the additional pressure gradient on drag, experiments were conducted with two different models (scale 1:5) in the IVK Model Wind Tunnel. In these experiments the suction velocity of the boundary layer pre-suction served as a parameter to change the static pressure gradient along the test section and was for this purpose adjusted higher and lower than the standard suction velocity. It is shown that the total drag increment due to boundary layer pre-suction consists of at least two parts: the ground simulation increment and the static pressure gradient increment. The ground simulation increment is due to a decrease in the boundary layer thickness and the resulting modified flow beneath the model.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
Technical Paper

CFD Approach to Evaluate Wind-Tunnel and Model Setup Effects on Aerodynamic Drag and Lift for Detailed Vehicles

2010-04-12
2010-01-0760
Previous work by the authors showed the development of an aerodynamic CFD model using the Lattice Boltzmann Method for simulating vehicles inside the IVK Model-Scale Wind-Tunnel test-section. In both experiment and simulation, alternate configurations of the wind-tunnel geometry were studied to change the pressure distribution in the wind-tunnel test section, inducing a reduction in aerodynamic drag due to interference between the wind-tunnel geometry and the pressure on the surface of the vehicle. The wind-tunnel pressure distribution was modified by adding so-called “stagnation bodies” inside the collector to create blockage and to increase the pressure in the rear portion of the test section. The primary purpose of previous work was to provide a validated CFD approach for modeling wind-tunnel interference effects, so that these effects can be understood and accounted for when designing vehicles.
Technical Paper

Audi Aero-Acoustic Wind Tunnel

1993-03-01
930300
The present paper reveals the design concept as well as results of experimental investigations, which were conducted in the early design stage of the planned AUDI Aero-Acoustic Wind Tunnel. This low-noise open-jet facility, featuring a nozzle exit area of 11 m2 and a top speed of approximately 60 m/s, enables aerodynamic as well as acoustic testing of both, full-scale and model-scale ground vehicles. Ground simulation is provided by means of a moving-belt rig. The surrounding plenum is designed as a semi-anechoic chamber to simulate acoustic free-field conditions around the vehicle. Fan noise will be attenuated below the noise level of the open jet. The work reported herein, comprises 1/8-scale pilot-tunnel experiments of aerodynamic and acoustic configurations which were carried out at the University of Darmstadt.
Journal Article

Active Crosswind Generation and Its Effect on the Unsteady Aerodynamic Vehicle Properties Determined in an Open Jet Wind Tunnel

2018-04-03
2018-01-0722
In this article the unsteady aerodynamic properties of a 25% scale DrivAer notchback model as well as the influence of the wind tunnel environment on the resulting unsteady aerodynamic forces and moments under crosswind excitation are investigated using experimental and corresponding numerical methods. Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) swing® (side wind generator) is used to reproduce the essential properties of natural stochastic crosswind in the open jet test section of the Institute for Internal Combustion Engines and Automotive Engineering (IVK) model scale wind tunnel (MWK). The results show that the test environment of an open jet wind tunnel alters the amplitudes of side force and yaw moment under crosswind excitation when compared to an ideal environment neglecting wind tunnel interference effects.
X