Refine Your Search

Topic

Search Results

Technical Paper

Vehicle and Occupant Response in Heavy Truck to Passenger Car Sideswipe Impacts

2001-03-05
2001-01-0900
There have been a number of papers written about the dynamic effects of low speed front to rear impacts between motor vehicles during the last several years. This has been an important issue in the field of accident analysis and reconstruction because of the frequency with which the accidents occur and the costs of injuries allegedly associated with them. Sideswipe impacts are another, often minor, type of motor vehicle impact that generate a significant number of injury claims. These impacts are difficult to analyze for a number of reasons. First, there have been very few studies in the literature describing the specific dynamic effects of minor sideswipe impacts on the struck vehicles and their occupants. Those that have been performed have focused on the impact of two passenger cars.
Journal Article

Validation Study of a Generalized Minor Rear Vehicle Crash MADYMO Model Utilizing Real World Data

2009-06-09
2009-01-2264
A generalized MADYMO minor rear crash vehicle model with BioRIDII ATD was developed and validated using the mean response of previously published 12 km/h delta-V rear crash tests. BioRIDII simulation pelvis, thorax and head x-axis accelerations, as well as head y-axis angular acceleration, fell within corridors defining +/- one standard deviation of the mean BioRIDII crash test responses. Peak sagittal plane BioRIDII upper neck forces and moments in the simulation were on par with the mean values observed from the crash tests. After the model was validated for 12 km/h delta-V, the model was further exercised by performing simulations with (1) a Hybrid III 50th percentile occupant and (2) by reducing the pulse by 40% of its original value. Results indicate that this generalized minor rear crash model could be useful in accurately estimating occupant kinematics and kinetics in minor crashes up to at least 12 km/h delta-V as an alternative to expensive and time consuming crash testing.
Technical Paper

Two Dimensional Thoracic Modeling Considerations

1989-02-01
890605
There is currently a considerable effort being devoted to the development of anthropomorphic test devices for the measurement of thoracic side impact response. Both the SID and EUROSID have been proposed as viable candidates for this test device. In addition, the thorax of the three year old Fart 572 has been shown to be useful in simulating side impact while used in the frontal orientation. This apparent anomaly suggests that the intuitive differences between the frontal and side geometries of the thorax may not be significant. To date, all useable thoracic models have been unidirectional. For the most part, these have been frontal models. This paper discusses some of the difficulties inherent in the development of a two dimensional thoracic model and ways these difficulties can be addressed. Based on these considerations, a single thoracic impact model is proposed for simulation of both frontal and lateral impact without adjustment of model parameters for impact direction.
Technical Paper

The Vocabulary of Accident Reconstruction

1989-02-01
890634
Vehicular accidents occur in everyday life. Their degree of severity is often perceived by the general public based on the amount of human bodily injuries sustained. Nevertheless, accident reconstructionists measure the degree of severity of vehicular accidents by calculating terms that are called Collision Parameters. The principal objective of this paper is to describe the significance of the Collision Parameters and explain the vocabulary of accident reconstruction. A non-mathematical approach is utilized to provide a thorough understanding for the general public.
Technical Paper

The Use of Single Moving Vehicle Testing to Duplicate the Dynamic Vehicle Response From Impacts Between Two Moving Vehicles

2002-03-04
2002-01-0558
The Federal Side Impact Test Procedure prescribed by FMVSS 214, simulates a central, orthogonal intersection collision between two moving vehicles by impacting the side of the stationary test vehicle with a moving test buck in a crabbed configuration. While the pre- and post-impact speeds of the vehicles involved in an accident can not be duplicated using this method, closing speeds, vehicle damage, vehicle speed changes and vehicle accelerations can be duplicated. These are the important parameters for the examination of vehicle restraint system performance and the prediction of occupant injury. The acceptability of this method of testing is not as obvious for the reconstruction of accidents where the impact is non-central, or the angle of impact is not orthogonal. This paper will examine the use of crash testing with a single moving vehicle to simulate oblique or non-central collisions between two moving vehicles.
Technical Paper

Review of Pedestrian Safety Research in the United States

1989-02-01
890757
Pedestrian vehicle accidents account for a considerable proportion of all automobile related injuries and deaths each year. Due to the large difference in mass between the pedestrian and the vehicle, pedestrian injury reduction is a formidable task. In spite of these difficulties, world attention is beginning to focus on pedestrian injuries and methods to quantitatively evaluate a vehicle for its pedestrian injury potential. This paper reviews the status of work in the United States on devices and methods for measuring pedestrian impact response. Where data is available test device response is summarized. The state of pedestrian accident research is also reviewed in the light of national and International interest in reducing pedestrian injuries.
Technical Paper

Response of the 6-Month-Old CRABI in Forward Facing and Rear Facing Child Restraints to a Simulated Real World Impact

2002-03-04
2002-01-0026
It is commonly recommended to use infant/child restraints in the rear seat, and that until an infant reaches certain age, weight and height criteria, the infant restraint should be placed rear facing. This paper will describe the injuries suffered by an infant that was restrained in a forward-facing child seat placed in the front passenger seating position during a real world collision. Based on this collision, a full-scale vehicle to barrier impact test was performed. For this test, two 6-month-old CRABI dummies were used in identical child restraints. One of the restraints was placed in the front passenger seat in a forward facing configuration, and the other was placed in the right rear seating position in a rear-facing configuration. This paper provides a detailed discussion of the results of this test, including comparisons of the specific kinematics for both the restraint/child dummy configurations.
Technical Paper

Response of Neck Muscles to Rear Impact in the Presence of Bracing

2006-07-04
2006-01-2369
In this research, cervical muscle behavior in rear impact accidents was investigated. Specifically, cervical muscle forces and muscle lengthening velocities were investigated with respect to cervical injuries. Variation of the onset time for muscle activation, variation of muscle activation level and variation of rear impact pulses were considered. The human body simulation computer program, MADYMO and anthropometric numerical human model were used to evaluate the neck. The factors mentioned above were examined with specific data being obtained from several different literature sources. Cervical muscles were separated into three groups, the sternocleidomastoideus, the flexor muscle group and the extensor muscle group. Longuscolli and spleniuscapitis were selected to represent the flexor muscle and extensor muscle groups respectively. The values and trends of the muscle forces and lengthening velocities are investigated in each muscle group.
Technical Paper

Response of Brake Light Filaments to Impact

1988-02-01
880234
Taillight lamp filaments provide valuable information on their illumination status during a collision. This information is contained in the shape of filament deformation, extent and nature of filament fracture, and filament oxidation. The degree of deformation of these filaments, a quantity which may be useful in determining velocities prior to impact, has been documented for headlights but has not been closely examined for taillights. In this paper, a study of the quantification of automobile taillight filament response when subjected to low speed impacts is presented. These studies include two different brands, five velocities up to approximately 19 miles per hour, three filament orientations, and two different deceleration pulses. Recommendations are given for further study in order to provide sufficient data for practical application and use in accident reconstruction.
Technical Paper

Reconstruction of Real World Pedestrian Impact

1986-02-24
860210
This paper presents a pedestrian head impact reconstruction methodology as an initial mitigating response to this need for pedestrian protection. This methodology which is based on preliminary testing results is illustrated with a real world case example from the Pedestrian Accident Investigation Data Support (PAIDS) Study. This PAIDS study provides documentation of medical reports, vehicle impact speeds, photographs and a dent profile of the vehicle damage. The pedestrian head impact damage from this real-world case is reproduced in a comparison vehicle with a rigid pneumatic impactor developed for the National Highway Traffic Safety Administration. The physical reconstruction results are then compared to the actual accident damage and conclusions are rendered.
Technical Paper

Practical Application of Vehicle Speed Determination from Crush Measurements

1987-02-01
870498
The use of vehicle damage measurements has been proven to be an effective technique in the determination of impact energy and pre-collision speeds. However, as with any analytical technique, the quality of the speed estimate is highly dependent on the accuracy of the measurements. This relationship suggests a need to employ intricate and exacting measurement schemes to obtain useable data. This approach is often difficult to implement in a routine accident investigation where a tape measure may be the only available measuring device. In the current study, vehicle damage resulting from collisions with a known speed is measured with techniques of increasing sophistication and the results are compared. These measurements are then used in conjunction with the CRASH III computer program to estimate the pre-impact vehicle speeds. The analysis technique used by CRASH III is also reviewed to provide a summary understanding of how the crush measurements are used in the program.
Technical Paper

Perception/Reaction Time Values for Accident Reconstruction

1989-02-01
890732
Field literature in testing and experimentation on general human perception and reaction times, was reviewed to better address questions on the parameters of driving performance. Brake reaction time studies and driver visual search studies were reviewed with attendant material on the effects of aging, intoxication and fatigue. A short examination is made on the degree of increase in “surprise intrusion” event upper values from simple human basic reaction time testing to a real-time pedestrian crossing event in real-world urban driving. These upper range values began at 0.78 second in the laboratory environment and became 2.50 seconds on an urban street in real-time.
Technical Paper

MADYMO Modeling of the IHRA Head-form Impactor

2005-06-14
2005-01-2740
The International Harmonization Research Activities Pedestrian Safety Working Group (IHRA PSWG) has proposed design requirements for two head-forms for vehicle hood (bonnet) impact testing. This paper discusses the development of MADYMO models representing the IHRA adult and child head-forms, validation of the models against laboratory drop tests, and assessment of the effect of IHRA geometric and mass constraints on the model response by conducting a parameter sensitivity analysis. The models consist of a multibody rigid sphere covered with a finite element modeled vinyl skin. The most important part in developing the MADYMO head-form models was to experimentally determine the material properties of the energy-absorbing portion of the head-form (vinyl skin) and incorporate these properties into MADYMO using a suitable material model. Three material models (linear isotropic, viscoelastic, hyperelastic) were examined.
Technical Paper

MADYMO Model to Assess Lumbar Spine Loading during Activities of Daily Living

2008-06-17
2008-01-1910
Determining injury causation and/or developing injury thresholds is important, specifically in the lumbar spine during minor accidents. Much work has been done to study cervical spine behavior, however, there is a lack of data on injury thresholds of the lumbar spine and on lumbar exposure during these minor events. A MADYMO model was developed to quantify the lumbar loads and accelerations experienced when dropping down onto a surface into a seated position. The model was validated using data collected during tests involving an instrumented Hybrid III dummy. This work shows that MADYMO models can be used to predict the lumbar spine's exposure during common everyday activities.
Technical Paper

Head Impact Reconstruction - HIC Validation and Pedestrian Injury Risk

1993-03-01
930895
Experimental reconstructions of pedestrian accidents involving head injury sustained primarily from hood impact were conducted to determine the relationship between HIC and injury severity. The purpose was to establish the capability of predicting pedestrian head injury severity in simple laboratory tests. The reconstruction test results were analyzed by a median ranking technique to provide a family of curves showing probability of injury of AIS 3, 4, and 5 severities as a function of HIC. This analysis method was used by Prasad and Mertz [1]1 to develop a head injury risk curve from cadaver head impact test data. Results of the two analyses were compared to determine the degree of agreement between the HIC/injury-risk relationship derived from controlled experiments with cadavers and that derived from uncontrolled accidents involving live people. The reconstruction test results also were used to derive a relationship between head injury risk (HIC) and vehicle impact speed.
Technical Paper

Evaluation of Child Restraint Devices Using Computer Animation

1992-11-01
922529
A technique has been developed to study the effects of the vehicle interior on the performance of child safety seats. Child safety seat sled tests are used to define the kinematics of the seat and child in a crash situation. Computer animation of this motion is superimposed on the motion of the actual vehicle crash tests giving an estimation of the kinematics of the child and child seat in a real crash situation. The significance of the vehicle interior and the interference of the vehicle interior with the child's kinematics is presented within the computer animation. The analysis is conducted using a single child restraint device in multiple seating conditions within a single vehicle.
Technical Paper

Empirical Injury Prediction of the Pedestrian Thorax

1983-02-01
830187
The development of injury predictive models for pedestrian thoracic impact based on experimental data obtained in a previous study is presented. The data consists of ten cadaveric test subjects including eight side and two frontal impacts. A ten accelerometer array was mounted on the thorax to define thoracic kinematics. Three types of parameters, Q, B, and PSD, are developed to summarize each acceleration signal. A statistical regression is performed to generate empirical models for predicting the injury level (number of rib fractures) from these parameters. Coefficients of determination for these models range from 0.8 to 0.99 with the new PSD parameter showing exciting promise. Success of these parameters in predicting thoracic injury implies a relationship with frequency, particularly in the neighborhood of 60 Hz.
Technical Paper

Development of a Child Lateral Thoracic Impactor

1986-02-24
860368
This paper describes the development of a device to simulate the thorax of the fiftieth percentile six year old child in lateral blunt impact. The device is to be used to reconstruct actual vehicle/pedestrian collisions to determine the injury potential that various vehicles have towards pedestrians. The device is a modification of a fiftieth percentile six year old dummy thorax. Verification of the response is made by comparison with adult cadaver lateral impact data normalized and scaled to the child case. Performance evaluation of the device gave encouraging results although repeatability needs further verification.
Technical Paper

Critical Review of the Use of Seat Belts by Pregnant Women

1989-02-01
890752
Seat belt usage in the United States is increasing dramatically, due in part to legislative action. In addition, education programs have improved public awareness of the need for automotive restraints in achieving crash survival and injury reduction. The safety consciousness level of automobile passengers is particularly strong among pregnant women. It is reasonable to expect wider use of seat belts by expectant mothers due to this acute attention to safety. The literature demonstrates that incorrect usage of seat belts is a cause of injury. This can be especially applicable during pregnancy when changes in anatomy dictate a change in belt positioning, Review of the literature shows that the technical issues associated with the use of current production belt restraint systems by pregnant women has not been addressed.
X