Refine Your Search



Search Results

Technical Paper

“A Flame Ionization Technique for Measuring Total Hydrocarbons in Diesel Exhaust”

The method of flame ionization was used for measuring total hydrocarbons in both single-cylinder and multicylinder 4-cycle, direct injection diesel engine exhaust. Use of the emission parameters of hydrocarbon concentration, per cent unburned fuel, specific hydrocarbon rate, mass of hydrocarbons per million cycles, mass of hydrocarbons per mile, and mass of hydrocarbons per ton-mile are discussed. The basic approach used in the flame ionization detector is shown. The hydrocarbon sample was transferred from the exhaust system through a heated sample line and oven operating at 375 F. The sample line was aspirated to reduce the sample residence time to 2 sec. The effect various sampling locations have on hydrocarbon measurements from a single-cylinder engine is shown and discussed. The effects of load, speed, and injection timing on hydrocarbon emission data are shown for a single-cylinder engine.
Technical Paper

Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency

The present study investigates the pressure drop and filtration characteristics of wall-flow diesel particulate monoliths, with the aid of a mathematical model. An analytic solution to the model equations describing exhaust gas mass and momentum conservation, in the axial direction of a monolith cell, and pressure drop across its porous walls has been obtained. The solution is in very good agreement with available experimental data on the pressure drop of a typical wall-flow monolith. The capture of diesel particles by the monolith, is described applying the theory of filtration through a bed of spherical collectors. This simple model, is in remarkable agreement with the experimental data, collected during the present and previous studies, for the accumulation mode particles (larger than 0.1 μm).
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

Variability in Particle Emission Measurements in the Heavy Duty Transient Test

A study of the sources of variability in particulate measurements using the Heavy-Duty Transient Test (40 CFR Subpart N) has been conducted. It consisted of several phases: a critical examination of the test procedures, visits to representative facilities to compare and contrast facility designs and test procedures, and development of a simplified model of the systems and procedures used for the Heavy-Duty Transient Test. Some of the sources of variability include; thermophoretic deposition of particulate matter onto walls of the sampling system followed by subsequent reentrainment in an unpredictable manner, the influence of dilution and cooling upon the soluble organic fraction, inconsistency among laboratories in the engine and dynamometer control strategies, and errors in measurements of flows into and out of the secondary dilution tunnel.
Technical Paper

Unsteady Vaporization Histories and Trajectories of Fuel Drops Injected into Swirling Air

Single droplet theory is used to simulate the behavior of fuel sprays in high-speed open-chamber diesels. A model for sprays in still air is presented which includes the air motion induced by the spray. Calculated paths and vaporization histories for droplets injected into swirling air are also presented. It is shown that the paths of vaporizing drops are closely approximated by solid sphere calculations. The effects of swirl speed, engine rpm, and squish air motion are also investigated.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 2 – Model Validation Using Transient Data

The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of a cooling system for an on-highway heavy duty diesel powered truck under steady and transient operation. In Part 1 of this research, the code development and verification has been presented. The revised and enhanced VECSS (version 8.1) software is capable of simulating in real-time a Freightliner FLD 120 truck with a Detroit Diesel Series 60 engine, Behr McCord radiator, Allied signal / Garrett Automotive charge air cooler and turbocharger, Kysor DST variable speed fan clutch, DDC oil and coolant thermostat. Other cooling system components were run and compared with experimental data provided by Kysor Cooling Systems. The experimental data were collected using the Detroit Diesel Electronic Control's (DDEC) Electronic Control Module (ECM) and the Hewlett Packard (HP) data acquisition system.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 1 - Model Development

The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of the cooling system of an on-highway heavy duty diesel powered truck under steady and transient operation. This code includes an engine cycle analysis program along with various components for the four main fluid circuits for cooling air, cooling water, cooling oil, and intake air, all evaluated simultaneously. The code predicts the operation of the response of the cooling circuit, oil circuit, and the engine compartment air flow when the VECSS is operated using driving cycle data of vehicle speed, engine speed, and fuel flow rate for a given ambient temperature, pressure and relative humidity.
Technical Paper

The Use of the Vehicle Engine Cooling System Simulation as a Cooling System Diesel Tool

Enhanced VECSS simulation program was tested for use as a cooling system design tool. The design parameters indicated in the study were varying fan type, fan speed, engine power rating, radiator style and air conditioning condenser. The predicted temperature results were compared to the experimental data, and were found to follow the measured trends, and in cases when the exact parameters were simulated, were found to match the temperature amplitudes.
Technical Paper

The Theoretical Development of Vehicle Engine Cooling Airflow Models Using Incompressible Flow Methods

A one-dimensional incompressible flow model covering the mechanisms involved in the airflow through an automotive radiator-shroud-fan system with no heat transfer was developed. An analytical expression to approximate the experimentally determined fan performance characteristics was used in conjunction with an analytical approach for this simplified cooling airflow model, and the solution is discussed with illustrations. A major result of this model is a closed form equation relating the transient velocity of the air to the vehicle speed, pressure rise characteristics and speed of the fan, as well as the dimensions and resistance of the radiator. This provides a basis for calculating cooling airflow rate under various conditions. The results of the incompressible flow analysis were further compared with the computational results obtained with a previously developed one-dimensional, transient, compressible flow model.
Technical Paper

The Study of the Effect of Exhaust Gas Recirculation on Engine Wear in a Heavy-Duty Diesel Engine Using Analytical Ferrography

A study was undertaken to investigate the affect of exhaust gas recirculation (EGR) on engine wear and lubricating oil degradation in a heavy duty diesel engine using a newly developed methodology that uses analytical ferrography in conjunction with short term tests. Laboratory engine testing was carried out on a Cummins NTC-300 Big Cam II diesel engine at rated speed (1800 RPM) and 75% rated load with EGR rates of 0, 5, and 15% using a SAE 15W40 CD/SF/EO-K oil. Dynamometer engine testing involved collecting oil samples from the engine sump at specified time intervals through each engine test. These oil samples were analyzed using a number of different oil analysis techniques that provide information on the metal wear debris and also on the lubricating oil properties. The results from these oil analysis techniques are the basis of determining the effect of EGR on engine wear and lubricating oil degradation, rather than an actual engine tear down between engine tests.
Technical Paper

The Physical and Chemical Character of Diesel Particulate Emissions-Measurement Techniques and Fundamental Considerations

The techniques used to characterize the chemical and physical nature of particulates in diesel exhaust emissions are reviewed. The emphasis is on understanding the broader aspects of the fundamental nature of not only diesel particulates, but particulate systems in general. Consideration is given to the special nature of particulates which make them significant pollutants and to the relative place of the diesel in the formation of man-made particles. The underlying combustion processes leading to carbon and sulfur based particulates are reviewed. The important variables in steps of the combustion processes which lead to particulate formation are considered, as well as major fuel and engine factors. Collection methods are examined with examples given from current diesel dilution techniques. Probes, sampling lines, and instrumentation are considered.
Technical Paper

The Measurement and Sampling of Controlled Regeneration Emissions from a Diesel Wall-Flow Particulate Trap

A diesel exhaust sampling system was specially designed to measure and collect emissions from a ceramic wall-flow particulate trap during periods of controlled electric regeneration with the exhaust emissions bypassing the trap. This resulted in the regeneration emissions being independent of those produced during either baseline (no control) or trap (exhaust filtration) sampling conditions. This system provided data regarding the physical, chemical, and biological character of regeneration emissions relative to baseline and trap emissions. Selected emission levels measured continuously during the regeneration process were also used to define the particle combustion process in the trap core. Variations in hydrocarbons (HC), oxides of nitrogen (NOx), and particulate volume concentrations during the regeneration process were used to define four stages of the combustion process: preheat; combustion wave formation; combustion wave propagation; and combustion wave extinction.
Technical Paper

The Measurement and Analysis of the Physical Character of Diesel Particulate Emissions

One of the more objectionable aspects of the use of the diesel engine is its emission of particulate matter. Methods for collecting particulate matter samples in the undiluted exhaust gases with an Andersen Impactor for gravimetric and electron microscopy analysis are developed. A direct injection Vee-eight naturally aspirated diesel engine was used in the study. This paper presents the results of an in-depth study of the physical characteristics of diesel particles. The size distribution of the particulate matter was obtained using an Andersen Inertial Impactor for the engine conditions applicable to the SAE 13-mode cycle. The particulate matter was analyzed using both scanning and transmission electron microscopes and was found to be comprised of individual spherical particles ranging from 100 ņ to 800 Å with a mean size of approximately 260 Å. The particulate matter was analyzed for carbon, hydrogen and nitrogen.
Technical Paper

The Influence of a Low Sulfur Fuel and a Ceramic Particle Trap on the Physical, Chemical, and Biological Character of Heavy-Duty Diesel Emissions

This study was conducted to assess the effects of a low sulfur (<0.05 wt.%) fuel and an uncatalyzed ceramic particle trap on heavy-duty diesel emissions during both steady-state operation and during periods of electrically assisted trap regeneration. A Cummins LTA10-300 engine was operated at two steady-state modes with and without the trap. The exhaust trap system included a Corning EX-54 trap with an electrically assisted regeneration system. Both regulated emissions (oxides of nitrogen - NOx, total hydrocarbons - HC, and total particulate matter - TPM) and some unregulated emissions (polynuclear aromatic hydrocarbons - PAH soluble organic fraction - SOF, sulfates, vapor phase organics, and mutagenic activity) were measured during baseline, trap, and regeneration conditions. Emissions were collected with low sulfur (0.01 wt.%) fuel and compared to emissions with a conventional sulfur (0.32 wt.%) fuel. These fuels also varied in other fuel properties.
Technical Paper

The Influence of Sampling Conditions on the Repeatability of Diesel Particulate and Vapor Phase Hydrocarbon and PAH Measurements

A study was conducted to assess the effects of controlling filter face temperatures and two differently sized collection systems on diesel total particulate matter (TPM) and vapor phase hydrocarbon levels from a diesel engine. The results were used to revise sampling protocols so that variability associated with quantitation of polynuclear aromatic hydrocarbons (PAH) is minimized. Particulate soluble organic fraction (SOF) levels (%) were compared 1) for tests where the dilute exhaust filter face temperature was held constant by varying dilution ratio (DR) to account for day to day variations in inlet air temperature to the tunnel and 2) for tests in earlier studies where the DR was held constant and the filter face temperature then varied because of varying tunnel inlet air temperature. Between date variations in %SOF were reduced by about 60% due to holding filter face temperatures constant, compared to holding DR constant.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

The Filtration and Particulate Matter Oxidation Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter: Experimental and 1-D 2-Layer Model Results

A 1-D 2-layer model developed previously at MTU was used in this research to predict the pressure drop, filtration characteristics and various properties of the particulate filter and the particulate deposit layer. The model was calibrated and validated for this CPF with data obtained from steady state experiments conducted using a 1995 Cummins M11-330E heavy-duty diesel engine with manual EGR and using ULSF. The CPF used is a NGK filter having a cordierite substrate with NEX catalyst type formulation (54% porosity, 15.0 μm mean pore diameter and 50 gms/ft3 Pt). The filter was catalyzed using a wash coat process. The model was used to predict the pressure drop, particulate mass retained inside the CPF, particulate mass filtration efficiency and concentration downstream of the CPF with agreement between the experimental and simulated data.
Technical Paper

The Enhancement and Validation of a Vehicle Engine Cooling System Simulation for a Heavy Duty Diesel Truck

The Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University in 1982 was enhanced to the extent that it can be used as a cooling system design tool for a heavy duty diesel truck. The enhancements are described in the present paper, while the use of the VECSS as a cooling system design tool is presented in the companion paper, “The Use of the Vehicle Engine Cooling System Simulation as a Cooling System Design Tool.” The enhanced VECSS was validated by comparing predicted temperature results to data collected by the Cummin's Engine Company during Air-to-Boil (ATB) tests, and during an “over-the-road” dynamic run of a heavy duty diesel truck. The enhanced model provided results which compared very favorably to both, the steady state ATB data and the dynamic “over-the-road” data.
Technical Paper

The Engineering Control of Diesel Pollutants in Underground Mining

A review of mine air pollutant standards and the important pollutants to control in underground mines using diesel powered equipment is presented. The underground Mine Air Quality Laboratory instrumentation is discussed. This includes the Mine Air Monitoring Laboratory (MAML) and the instrumented Load Haul Dump (LHD) vehicle. The MAML measures CO, NO2, NO, CO2, particulate and temperatures while the LHD instrumentation measures and records engine speed, rack position (fuel rate), vehicle speed, CO2 concentration, exhaust temperature and operating mode with transducers and a Sea Data Corporation data logging and reader system. The mine LHD cycle data are related to the EPA 13 mode cycle data. Engine and aftertreatment emission control methods are reviewed including recent laboratory NO, NO2, sulfate and particulate data for a monolith catalyst. Maintenance of the LHD vehicle by engine subsystems in relation to component effects on emissions is presented.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.