Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts

1999-10-10
99SC04
The purpose of this study is to help understand the thoracic response and injury mechanisms in high-energy, limited-stroke, lateral velocity pulse impacts to the human chest wall. To impart such impacts, a linear impactor was developed which had a limited stroke and minimally decreased velocity during impact. The peak impact velocity was 5.6 ± 0.3 m/s. A series of BioSID and cadaver tests were conducted to measure biomechanical response and injury data. The conflicting effects of padding on increased deflection and decreased acceleration were demonstrated in tests with BioSID and cadavers. The results of tests conducted on six cadavers were used to test several proposed injury criteria for side impact. Linear regression was used to correlate each injury criterion to the number of rib fractures. This test methodology captured and supported a contrasting trend of increased chest deflection and decreased TTI when padding was introduced.
Technical Paper

Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity Corridors

2018-11-12
2018-22-0009
Analysis and validation of current scaling relationships and existing response corridors using animal surrogate test data is valuable, and may lead to the development of new or improved scaling relationships. For this reason, lateral pendulum impact testing of appropriate size cadaveric porcine surrogates of human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male age equivalence, were performed at the thorax and abdomen body regions to compare swine test data to already established human lateral impact response corridors scaled from the 50th percentile human adult male to the pediatric level to establish viability of current scaling laws. Appropriate Porcine Surrogate Equivalents PSE for the human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male, based on whole body mass, were established. A series of lateral impact thorax and abdomen pendulum testing was performed based on previously established scaled lateral impact assessment test protocols.
Technical Paper

SID Response Data in a Side Impact Sled Test Series

1992-02-01
920350
Heidelberg-type side impact sled tests were conducted using SID side impact dummies. These tests were run under similar conditions to a series of cadaveric sled tests funded by the Centers for Disease Control in the same lab. Tests included 6.7 and 9 m/s (15 and 20 mph) unpadded and 9 m/s padded tests. The following padding was used at the thorax: ARSAN, ARCEL, ARPAK, ARPRO, DYTHERM, 103 and 159 kPa (15 and 23 psi) crush strength paper honeycomb, and an expanded polystyrene. In all padded tests the dummy Thoracic Trauma Index, TTI(d) was below the value of 85 set by federal rulemaking (49 CFR, Part 571 et al., 1990). In contrast, cadavers in 9 m/s sled tests did not tolerate ARSAN 601 (MAIS 5) and 23 psi (159 kPa) paper honeycomb (MAIS 5), and 20 psi (138 kPa) Verticel™ honeycomb (MAIS 4), but tolerated 15 psi (103 kPa) paper honeycomb (average thoracic MAIS 2.3 in six tests).
Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

Regional Tolerance of the Shoulder, Thorax, Abdomen and Pelvis to Padding in Side Impact

1993-03-01
930435
Lateral impact testing has been performed on the shoulder, thorax, abdomen and pelvis of human cadavers by several investigators. The impacts have either been whole body impacts in sled tests or pendulum type impacts to the separate regions. Based on the forces produced in these tests and the accompanying injury, initial recommendations can be made on force-tolerance and padding tolerance to the various regions of the human body in side impact. The pelvis has the highest force tolerance, followed by the shoulder, abdomen and thorax. Padding crush strength tolerance based on these forces and estimated contact areas are presented. This information is of practical importance to engineers who design door interior trim for side impact safety.
Technical Paper

Mechanical Properties of the Shoulder Ligaments under Dynamic Loading

2004-11-01
2004-22-0006
Thirty-three fresh human cadaver shoulders were harvested and bone-ligament-bone specimens of acromioclavicular joint, coracoclavicular joint and sternoclavicular joint were obtained. A test fixture and clamps specifically designed for this ligament study and a high-speed Instron machine were used. One quasi-static rate (nominally 0.1 %/sec) and two high rates (nominally, high rate 1 = 40,000 %/sec and high rate 2 = 15,000 %/sec) were used in this study. In the acromioclavicular joint tests, ligament failure was the most common failure mode. Bone fractures occurred most often at the clavicle rather than acromion. In the coracoclavicular joint tests, the majority of specimens failed at the ligament and bone fractures occurred at the coracoid. In the sternoclavicular joint tests, the specimen failed at the bone in most cases. In the acromioclavicular joint and coracoclavicular joint tests, high rate 2 tests and quasi-static tests had more bone fracture cases than high rate 1 tests.
Technical Paper

Lower Abdominal Tolerance and Response

1986-10-27
861878
Twelve unembalmed human cadavers were tested for lower abdominal injury tolerance and mechanical response. The impacts were in an anterior-to-posterior direction and the level of impact was primarily in the lower abdomen at the L3 level of the lumbar spine. The impactor mass was either 32 kg or 64 kg. The impactor face was a 25 mm diameter aluminum bar, with the long axis of the bar parallel to the width of the cadaver body. In this paper, mechanical response is presented in terms of force-time and penetration-time histories, and force vs. abdominal penetration cross-plots. Injury tolerance is described in terms of post-impact necropsy findings and AIS ratings. Based on our studies, the lower abdomen of the unembalmed human cadaver is much less stiff than is suggested by previous research, and the stiffness is velocity and mass dependent, as is suggested by the correlation coefficients presented in this paper. Force-time history and force-penetration response corridors are presented.
Technical Paper

Finite Element Modeling of Gross Motion of Human Cadavers in Side Impact

1994-11-01
942207
Seventeen Heidelberg type cadaveric side impact sled tests, two sled-to-sled tests, and forty-four pendulum tests have been conducted at Wayne State University, to determine human responses and tolerances in lateral collisions. This paper describes the development of a simplified finite element model of a human occupant in a side impact configuration to simulate those cadaveric experiments. The twelve ribs were modeled by shell elements. The visceral contents were modeled as an elastic solid accompanied by an array of discrete dampers. Bone condition factors were obtained after autopsy to provide material properties for the model. The major parameters used for comparison are contact forces at the level of shoulder, thorax, abdomen and pelvis, lateral accelerations of ribs 4 and 8 and of T12, thoracic compression and injury functions V*C, TTI and ASA.
Technical Paper

Facial Impact Tolerance and Response

1986-10-27
861896
Facial impact experiments were conducted on eleven unembalmed human cadavers. A 32 kg or 64 kg impactor with a 25 mm diameter, rigid, cylindrical contact surface was oriented in the left-right direction relative to the face and contacted the nose at the elevation of the infraorbital margins. The impactor was propelled toward the race along an anterior-to-posterior path, with contact velocities ranging from 10 to 26 km/h. Accelerometers mounted on the impactor and the occiput provided data for analyzing the dynamics of the impacts. While the threshold for nasal bone fractures was not determined, it appears that a peak force of about 3 kN (filtered 180 Hz) is a representative threshold for more severe fracture patterns. A preliminary dynamic force vs penetration response specification for the above mode of loading is offered.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

A New Model of Traumatic Axonal Injury to Determine the Effects of Strain and Displacement Rates

2006-11-06
2006-22-0023
Traumatic brain injury (TBI) continues to be a major health problem, with over 500,000 cases per year with a societal cost of approximately $85 billion in the US. Motor vehicle accidents are the leading cause of such injuries. In many cases of TBI widespread disruption of the axons occurs through a process known as diffuse axonal injury (DAI) or traumatic axonal injury (TAI). In the current study, an in vivo TAI model was developed using spinal nerve roots of adult rats. This model was used to determine functional and structural responses of axons to various strains and displacement rates. Fifty-six L5 dorsal nerve roots were each subjected to a predetermined strain range (<10%, 10-20% and >20%) at a specified displacement rate (0.01 mm/sec and 15 mm/sec) only once. Image analysis was used to determine actual strains on the roots during the pull.
X