Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Inertial Parameters-Measured Values and Approximations

1988-11-01
881767
This paper describes an apparatus, called the Inertial Parameter Measurement Device (IPMD), which recently has been developed by the National Highway Traffic Safety Administration at its Vehicle Research and Test Center. The IPMD measures the center of gravity height and the pitch, roll, and yaw moments of inertia of a vehicle. The first section of this paper describes the features, capabilities, limitations, and design of the IFMD. This is followed by a presentation of the vehicle parameters that have been measured by it, to date. The final section of the paper presents several commonly used, and one proposed, rules of thumb for estimating inertial parameters. Data from measurements made by the IPMD are used to show the validity of these rules. Curves obtained by fitting the measured data are also shown for the moments of inertia as functions of the vehicle weight.
Technical Paper

Vehicle Dynamics Model for Simulation Use with Autoware.AI on ROS

2024-04-09
2024-01-1970
This research focused on developing a methodology for a vehicle dynamics model of a passenger vehicle outfitted with an aftermarket Automated Driving System software package using only literature and track based results. This package consisted of Autoware.AI (Autoware ®) operating on Robot Operating System 1 (ROS™) with C++ and Python ®. Initial focus was understanding the basics of ROS and how to implement test scenarios in Python to characterize the control systems and dynamics of the vehicle. As understanding of the system continued to develop, test scenarios were adapted to better fit system characterization goals with identification of system configuration limits. Trends from on-track testing were identified and paired with first-order linear systems to simulate physical vehicle responses to given command inputs. Sub-models were developed and simulated in MATLAB ® with command inputs from on-track testing.
Technical Paper

The Variation of Static Rollover Metrics With Vehicle Loading and Between Similar Vehicles

1992-02-01
920583
This paper examines variability of two static rollover metrics, Static Stability Factor (SSF) and Tilt Table Ratio (TTR), due to vehicle loading and vehicle-to-vehicle variation. Variability due to loading was determined by measuring SSF and TTR for 14 vehicles/configurations at multiple loadings. Up to five loadings were used per vehicle/configuration tested. Vehicle-to-vehicle variability was studied by measuring SSF and TTR for ten unmodified vehicles of each of four make/models. Five baseline vehicles, as similar as was feasible, were tested. The other five test vehicles spanned the range of submodels and options available. In general, both SSF and TTR decreased as occupants were added to a vehicle. The change in SSF and TTR per occupant was fairly consistent, with changes in TTR being more consistent. Placing ballast on the floor of the cargo compartment had a mixed effect on SSF, raising it for some vehicles and lowering it for others.
Technical Paper

The Importance of Tire Lag on Simulated Transient Vehicle Response

1991-02-01
910235
This paper discusses the importance of having an adequate model for the dynamic response characteristics of tire lateral force to steering inputs. Computer simulation and comparison with experimental results are used to show the importance of including appropriate tire dynamics in simulation tire models to produce accurate predictions of vehicle dynamics. Improvements made to the tire dynamics model of an existing vehicle stability and control simulation, the Vehicle Dynamics Analysis, Non-Linear (VDANL) simulation, are presented. Specifically, the improvements include changing the simulation's tire dynamics from first-order system tire side force lag dynamics to second-order system tire slip angle dynamics. A second-order system representation is necessary to model underdamped characteristics of tires at high speeds. Lagging slip angle (an input to the tire model) causes all slip angle dependent tire force and moment outputs to be lagged.
Technical Paper

The Design of a Suspension Parameter Measurement Device

1987-02-01
870576
This paper describes the theory and design of an apparatus, the Suspension Parameter Measurement Device (SPMD), which has been developed to measure the displacements and forces which occur at the road wheels of a vehicle as the body moves, or as lateral and/or longitudinal forces are applied at the tire/road interface. Wheel movements resulting from the bounce, pitch, or roll motions of the vehicle body in the absence of lateral and longitudinal forces at the tire/road interface are the kinematic characteristics of the suspension. Wheel displacements caused by the application of forces in the plane of the road are defined as the compliance characteristics, while those resulting from motions of the steering wheel are the steering characteristics. The purpose of the SPMD is to measure all of these characteristics, thereby providing data for use in the simulation of the performance of cars and light trucks.
Technical Paper

Test Planning, Analysis, and Evaluation System (Test PAES): A Data Archiving Tool for Engineers and Scientists

1997-02-24
970453
As Intelligent Transportation Systems (ITS) become more prevalent, the need to archive data from field tests becomes more critical. These data can guide the design of future systems, provide an information conduit among the many developers of ITS, enable comparisons across locations and time, and support development of theoretical models of driver behavior. The National Highway Traffic Safety Administration (NHTSA) is interested in such an archive. While a design for an ITS data archive has not yet been developed, NHTSA has supported the enhancement of the Test Planning, Analysis, and Evaluation System (Test PAES), originally developed by Calspan SRL Corporation for the U. S. Air Force Armstrong Laboratory, for possible use in such an archive. On a single screen, Test PAES enables engineering unit data, audio, and video, as well as a vehicle animation, to be time synchronized, displayed simultaneously, and operated with a single control.
Technical Paper

Suspension Testing Using the Suspension Parameter Measurement Device

1987-02-01
870577
This paper describes the process of testing a suspension on the Suspension Parameter Measurement Device (SPMD). It begins by discussing the process of preparing to test a suspension on the SPMD. This includes discussions of preparing a suspension identification data file, mounting the suspension to be tested on a buck, and the calibration of the SPMD's transducers. The next sections of the paper cover the actual testing performed on a suspension while it is mounted on the SPMD. The different types of suspension tests performed are described and the rationale for each type of test is discussed. The flowchart for a typical individual test is presented and explained. The matrix of individual tests performed for each suspension tested is discussed. Estimates of the time and manpower required to perform the testing are given. The paper next looks at the data measured by the SPMD. The first level of analysis performed on the data is explained.
Technical Paper

Sub-System and Full System Testing to Assess Side Impact Safety

1983-02-01
830465
A study is being conducted in which both component level and full scale crash tests are being compared. This report documents the approach selected for component level testing and the matrix selected for full scale crash testing. The hardware that was fabricated to conduct the component tests is shown and discussed. The component test results to date are discussed as to repeatability, durability and ability to discriminate between levels of safety.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Simulator Motion Base Sizing Using Simulation

1994-03-01
940227
The National Highway Traffic Safety Administration (NHTSA) has proposed building the National Advanced Driving Simulator (NADS). As proposed, the NADS will move the simulator's cab so that realistic motion cues are provided to the simulator's driver. It is necessary to determine the motion base capabilities that the NADS will need to simulate different severities and types of driving maneuvers with adequate simulated motion fidelity. The objectives of this study were (1) to develop tools, based on existing vehicle dynamics simulations, simulator washout algorithms, and human perceptual models, that allow required motion base capabilities to be determined and (2) to use these tools to perform analyses that determine the motion base capabilities needed by the NADS. The NADS motion base configuration examined during this study, which may not correspond to that used when the NADS is actually constructed, includes an X-Y Carriage capable of large excursions.
Technical Paper

Side Interior Stiffness Measurement

1986-10-27
861880
In side impacts, injury to occupants is caused by the contact of the occupant with one or more of the various interior surfaces, or structures, of the vehicle for instance, a majority of thoracic injuries are due to an impact with the interior area of the door. Likewise, a large number of head injuries result from the head striking upper interior structures. It may be possible that a change in the stiffness characteristics of these upper interior structures could reduce their injury causing potential. The first step toward improvement is the measurement of existing structural characteristics and the relation of these to head impact responses. This report reviews an approach and hardware used to measure the upper interior stiffness characteristics of a few vehicles. Alternative methods of stiffness characterization are presented.
Technical Paper

Side Impact Sled and Padding Development

1980-09-01
801307
IN A ONE YEAR LABORATORY STUDY, a side impact sled was designed, built, and validated. Using the sled and a newer generation of side impact dummy, a number of energy-absorbing materials were tested and superior materials identified. Initially this study concentrated on the crash test data for a number of V.W. Rabbits crashed in a previously completed study. The crashed vehicles were obtained, and interior crush tests were performed with a specially designed body form. This was done to determine how the effective stiffness (as seen by the occupant of the struck vehicle) of the interior door increases as the bullet vehicle presses against the interior door trim from the opposite side. An acceleration-type sled buck was then designed and built with an “interior door” mounted to mimic the interior stiffness determined from the crush tests. The sled was dynamically tested with a Haversine sled pulse similar to the door crash pulse.
Technical Paper

Side Impact Aggressiveness Attributes

1985-01-01
856083
Thoracic injury to the near side occupant in a side collision is normally caused from contact with the struck vehicle's crushed side structure engaged by the striking vehicle's front end. Extensive research has already been done to investigate the effect that strengthening and padding struck vehicle side structure has on occupant safety. This study investigated the effect that altering the striking vehicle front end characteristics has on occupant safety in a side impact. The National Highway Traffic Safety Administration's (NHTSA) moving deformable barrier (MDB) was used to conduct 12 crash tests. Three different types of honeycomb barrier faces were used, each representing a front end characteristic change. These were a reduction in stiffness, a lowering and tapering of the hood profile, and a lowering of the bumper. The alterations were believed to represent achievable production vehicle changes.
Technical Paper

Results of the National Highway Traffic Safety Administration's Thoracic Side Impact Protection Research Program

1984-04-01
840886
An extensive research program to evaluate the feasibility of improved side impact protection has been conducted by the National Highway Traffic Administration. This program concentrated on the potential reduction in thoracic injuries to vehicle occupants in side impact. Test conditions, test procedures, and test hardware for evaluating thoracic side impact protection were defined, developed, and evaluated. Injury mitigation concepts which included vehicle structural modifications and the addition of padding to the inner door surface were developed and evaluated. Test results support the feasibility of providing significant improvements in thoracic side impact protection. In addition, side impact tests were conducted on ten production automobiles. Results from these tests indicated a relatively low injury potential for occupants in some vehicles and a very high injury potential for occupants in other vehicles.
Technical Paper

Results from NHTSA's Experimental Examination of Selected Maneuvers that may Induce On-Road Untripped, Light Vehicle Rollover

2001-03-05
2001-01-0131
This paper summarizes the results of test maneuvers devised to measure on-road, untripped, rollover propensity. Complete findings from this research are contained in [1]. Twelve test vehicles, representing a wide range of vehicle types and classes were used. Three vehicles from each of four categories: passenger cars, light trucks, vans, and sport utility vehicles, were tested. The vehicles were tested with vehicle characterization and untripped rollover propensity maneuvers. The vehicle characterization maneuvers were designed to determine fundamental vehicle handling properties while the untripped rollover propensity maneuvers were designed to produce two-wheel lift for vehicles with relatively higher rollover propensity potential. The vehicle characterization maneuvers were Pulse Steer, Sinusoidal Sweep, Slowly Increasing Steer, and Slowly Increasing Speed. The rollover propensity maneuvers were J-Turn, J-Turn with Pulse Braking, Fishhook #1 and #2, and Resonant Steer.
Technical Paper

NHTSA DRIVER DISTRACTION RESEARCH: PAST, PRESENT, AND FUTURE

2001-06-04
2001-06-0177
Driver distraction has been identified as a high-priority topic by the National Highway Traffic Safety Administration, reflecting concerns about the compatibility of certain in-vehicle technologies with the driving task, whether drivers are making potentially dangerous decisions about when to interact with in-vehicle technologies while driving, and that these trends may accelerate as new technologies continue to become available. Since 1991, NHTSA has conducted research to understand the factors that contribute to driver distraction and to develop methods to assess the extent to which in-vehicle technologies may contribute to crashes. This paper summarizes significant findings from past NHTSA research in the area of driver distraction and workload, provides an overview of current ongoing research, and describes upcoming research that will be conducted, including research using the National Advanced Driving Simulator and work to be conducted at NHTSA’s Vehicle Research and Test Center.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Measured Vehicle Inertial Parameters-NHTSA’s Data Through November 1998

1999-03-01
1999-01-1336
This paper is primarily a printed listing of the National Highway Traffic Safety Administration’s (NHTSA) Light Vehicle Inertial Parameter Database. This database contains measured vehicle inertial parameters from SAE Paper 930897, “Measured Vehicle Inertial Parameters -NHTSA’s Data Through September 1992” (1), as well as parameters obtained by NHTSA since 1992. The proceeding paper contained 414 entries. This paper contains 82 new entries, for a total of 496. The majority of the entries contain complete vehicle inertial parameters, some of the entries contain tilt table results only, and some entries contain both inertia and tilt table results. This paper provides a brief discussion of the accuracy of inertial measurements. Also included are selected graphs of quantities listed in the database for some of the 1998 model year vehicles tested.
Technical Paper

Measured Vehicle Inertial Parameters -NHTSA's Data Through September 1992

1993-03-01
930897
This paper is primarily a printed listing of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Inertial Parameter Data Base. This data base contains measured vehicle inertial parameters from all of the 356 tests performed to date with NHTSA's Inertial Parameter Measurement Device (IPMD) that have resulted in data thought to be of general interest. Additionally, the data base contains tilt table data from all 168 vehicle tests performed to date using NHTSA's Tilt Table. The paper also summarizes the history of modifications to the IPMD and discusses how these modifications have improved the accuracy of IPMD measurements.
X