Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Inertial Parameters-Measured Values and Approximations

1988-11-01
881767
This paper describes an apparatus, called the Inertial Parameter Measurement Device (IPMD), which recently has been developed by the National Highway Traffic Safety Administration at its Vehicle Research and Test Center. The IPMD measures the center of gravity height and the pitch, roll, and yaw moments of inertia of a vehicle. The first section of this paper describes the features, capabilities, limitations, and design of the IFMD. This is followed by a presentation of the vehicle parameters that have been measured by it, to date. The final section of the paper presents several commonly used, and one proposed, rules of thumb for estimating inertial parameters. Data from measurements made by the IPMD are used to show the validity of these rules. Curves obtained by fitting the measured data are also shown for the moments of inertia as functions of the vehicle weight.
Technical Paper

The Variation of Static Rollover Metrics With Vehicle Loading and Between Similar Vehicles

1992-02-01
920583
This paper examines variability of two static rollover metrics, Static Stability Factor (SSF) and Tilt Table Ratio (TTR), due to vehicle loading and vehicle-to-vehicle variation. Variability due to loading was determined by measuring SSF and TTR for 14 vehicles/configurations at multiple loadings. Up to five loadings were used per vehicle/configuration tested. Vehicle-to-vehicle variability was studied by measuring SSF and TTR for ten unmodified vehicles of each of four make/models. Five baseline vehicles, as similar as was feasible, were tested. The other five test vehicles spanned the range of submodels and options available. In general, both SSF and TTR decreased as occupants were added to a vehicle. The change in SSF and TTR per occupant was fairly consistent, with changes in TTR being more consistent. Placing ballast on the floor of the cargo compartment had a mixed effect on SSF, raising it for some vehicles and lowering it for others.
Technical Paper

The Importance of Tire Lag on Simulated Transient Vehicle Response

1991-02-01
910235
This paper discusses the importance of having an adequate model for the dynamic response characteristics of tire lateral force to steering inputs. Computer simulation and comparison with experimental results are used to show the importance of including appropriate tire dynamics in simulation tire models to produce accurate predictions of vehicle dynamics. Improvements made to the tire dynamics model of an existing vehicle stability and control simulation, the Vehicle Dynamics Analysis, Non-Linear (VDANL) simulation, are presented. Specifically, the improvements include changing the simulation's tire dynamics from first-order system tire side force lag dynamics to second-order system tire slip angle dynamics. A second-order system representation is necessary to model underdamped characteristics of tires at high speeds. Lagging slip angle (an input to the tire model) causes all slip angle dependent tire force and moment outputs to be lagged.
Technical Paper

The Design of a Suspension Parameter Measurement Device

1987-02-01
870576
This paper describes the theory and design of an apparatus, the Suspension Parameter Measurement Device (SPMD), which has been developed to measure the displacements and forces which occur at the road wheels of a vehicle as the body moves, or as lateral and/or longitudinal forces are applied at the tire/road interface. Wheel movements resulting from the bounce, pitch, or roll motions of the vehicle body in the absence of lateral and longitudinal forces at the tire/road interface are the kinematic characteristics of the suspension. Wheel displacements caused by the application of forces in the plane of the road are defined as the compliance characteristics, while those resulting from motions of the steering wheel are the steering characteristics. The purpose of the SPMD is to measure all of these characteristics, thereby providing data for use in the simulation of the performance of cars and light trucks.
Technical Paper

Test Planning, Analysis, and Evaluation System (Test PAES): A Data Archiving Tool for Engineers and Scientists

1997-02-24
970453
As Intelligent Transportation Systems (ITS) become more prevalent, the need to archive data from field tests becomes more critical. These data can guide the design of future systems, provide an information conduit among the many developers of ITS, enable comparisons across locations and time, and support development of theoretical models of driver behavior. The National Highway Traffic Safety Administration (NHTSA) is interested in such an archive. While a design for an ITS data archive has not yet been developed, NHTSA has supported the enhancement of the Test Planning, Analysis, and Evaluation System (Test PAES), originally developed by Calspan SRL Corporation for the U. S. Air Force Armstrong Laboratory, for possible use in such an archive. On a single screen, Test PAES enables engineering unit data, audio, and video, as well as a vehicle animation, to be time synchronized, displayed simultaneously, and operated with a single control.
Technical Paper

Suspension Testing Using the Suspension Parameter Measurement Device

1987-02-01
870577
This paper describes the process of testing a suspension on the Suspension Parameter Measurement Device (SPMD). It begins by discussing the process of preparing to test a suspension on the SPMD. This includes discussions of preparing a suspension identification data file, mounting the suspension to be tested on a buck, and the calibration of the SPMD's transducers. The next sections of the paper cover the actual testing performed on a suspension while it is mounted on the SPMD. The different types of suspension tests performed are described and the rationale for each type of test is discussed. The flowchart for a typical individual test is presented and explained. The matrix of individual tests performed for each suspension tested is discussed. Estimates of the time and manpower required to perform the testing are given. The paper next looks at the data measured by the SPMD. The first level of analysis performed on the data is explained.
Technical Paper

Sprung/Unsprung Mass Properties Determination without Vehicle Diassembly

1996-02-01
960183
This paper presents a method of measuring a vehicle's sprung mass without vehicle disassembly. The method involves measuring whole vehicle properties at different trim heights. The accuracy of the method is tested using results for several vehicles. As an extension of the sprung mass determination, this paper also demonstrates the feasibility of determining the inertial properties of a vehicle's sprung mass without vehicle disassembly. Lastly, measured vehicle roll/yaw product of inertia values are presented for a selection of vehicles.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Simulator Motion Base Sizing Using Simulation

1994-03-01
940227
The National Highway Traffic Safety Administration (NHTSA) has proposed building the National Advanced Driving Simulator (NADS). As proposed, the NADS will move the simulator's cab so that realistic motion cues are provided to the simulator's driver. It is necessary to determine the motion base capabilities that the NADS will need to simulate different severities and types of driving maneuvers with adequate simulated motion fidelity. The objectives of this study were (1) to develop tools, based on existing vehicle dynamics simulations, simulator washout algorithms, and human perceptual models, that allow required motion base capabilities to be determined and (2) to use these tools to perform analyses that determine the motion base capabilities needed by the NADS. The NADS motion base configuration examined during this study, which may not correspond to that used when the NADS is actually constructed, includes an X-Y Carriage capable of large excursions.
Technical Paper

Sensitivity Analysis of a Reliability Model of the Potential Effectiveness of a Crash Avoidance System to Support Lane Change Decisions

1998-02-23
980854
Tijerina and Garrott (1997) used concepts from reliability theory to develop a model of the potential effectiveness of a crash avoidance system (CAS) to support lane change decisions. In the present paper, a sensitivity analysis is carried out on that model to examine the impact of variations in several model input variables on effectiveness predictions. The variables varied include the detection reliability of the CAS, the proportion of lane change attempts which involve a potential conflict with a principal other vehicle (POV), and the proportions of lane changes executed with each of four prototypical reliability structures. Results of the sensitivity analysis show relative insensitivity to variations in the other input variables if there are only a relatively small proportion of lane changes executed in CAS-only or CAS- driver-in-series fashion.
Technical Paper

Results from NHTSA's Experimental Examination of Selected Maneuvers that may Induce On-Road Untripped, Light Vehicle Rollover

2001-03-05
2001-01-0131
This paper summarizes the results of test maneuvers devised to measure on-road, untripped, rollover propensity. Complete findings from this research are contained in [1]. Twelve test vehicles, representing a wide range of vehicle types and classes were used. Three vehicles from each of four categories: passenger cars, light trucks, vans, and sport utility vehicles, were tested. The vehicles were tested with vehicle characterization and untripped rollover propensity maneuvers. The vehicle characterization maneuvers were designed to determine fundamental vehicle handling properties while the untripped rollover propensity maneuvers were designed to produce two-wheel lift for vehicles with relatively higher rollover propensity potential. The vehicle characterization maneuvers were Pulse Steer, Sinusoidal Sweep, Slowly Increasing Steer, and Slowly Increasing Speed. The rollover propensity maneuvers were J-Turn, J-Turn with Pulse Braking, Fishhook #1 and #2, and Resonant Steer.
Technical Paper

Response of Brake Light Filaments to Impact

1988-02-01
880234
Taillight lamp filaments provide valuable information on their illumination status during a collision. This information is contained in the shape of filament deformation, extent and nature of filament fracture, and filament oxidation. The degree of deformation of these filaments, a quantity which may be useful in determining velocities prior to impact, has been documented for headlights but has not been closely examined for taillights. In this paper, a study of the quantification of automobile taillight filament response when subjected to low speed impacts is presented. These studies include two different brands, five velocities up to approximately 19 miles per hour, three filament orientations, and two different deceleration pulses. Recommendations are given for further study in order to provide sufficient data for practical application and use in accident reconstruction.
Technical Paper

Repeated Measures Testing of Driver Collision Warning

2015-04-14
2015-01-1413
This paper investigates the effects on response time of a forward collision event in a repeated-measures design. Repeated-measures designs are often used in forward collision warning (FCW) testing despite concerns that the first exposure creates expectancy effects that may dilute or bias future outcomes. For this evaluation, 32 participants were divided into groups of 8 for an AA, BB, AB, BA design (A= No Warning; B=FCW alert). They drove in a high-fidelity simulator with a visual distraction task. After driving 15 min in a nighttime rural highway environment, a forward collision threat arose during the distraction task (Period 1). A second drive was then run and the forward collision threat was repeated again after ∼10 min (Period 2). The response times from these consecutive events were analyzed.
Technical Paper

NHTSA DRIVER DISTRACTION RESEARCH: PAST, PRESENT, AND FUTURE

2001-06-04
2001-06-0177
Driver distraction has been identified as a high-priority topic by the National Highway Traffic Safety Administration, reflecting concerns about the compatibility of certain in-vehicle technologies with the driving task, whether drivers are making potentially dangerous decisions about when to interact with in-vehicle technologies while driving, and that these trends may accelerate as new technologies continue to become available. Since 1991, NHTSA has conducted research to understand the factors that contribute to driver distraction and to develop methods to assess the extent to which in-vehicle technologies may contribute to crashes. This paper summarizes significant findings from past NHTSA research in the area of driver distraction and workload, provides an overview of current ongoing research, and describes upcoming research that will be conducted, including research using the National Advanced Driving Simulator and work to be conducted at NHTSA’s Vehicle Research and Test Center.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Measured Vehicle Inertial Parameters-NHTSA’s Data Through November 1998

1999-03-01
1999-01-1336
This paper is primarily a printed listing of the National Highway Traffic Safety Administration’s (NHTSA) Light Vehicle Inertial Parameter Database. This database contains measured vehicle inertial parameters from SAE Paper 930897, “Measured Vehicle Inertial Parameters -NHTSA’s Data Through September 1992” (1), as well as parameters obtained by NHTSA since 1992. The proceeding paper contained 414 entries. This paper contains 82 new entries, for a total of 496. The majority of the entries contain complete vehicle inertial parameters, some of the entries contain tilt table results only, and some entries contain both inertia and tilt table results. This paper provides a brief discussion of the accuracy of inertial measurements. Also included are selected graphs of quantities listed in the database for some of the 1998 model year vehicles tested.
Technical Paper

Measured Vehicle Inertial Parameters -NHTSA's Data Through September 1992

1993-03-01
930897
This paper is primarily a printed listing of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Inertial Parameter Data Base. This data base contains measured vehicle inertial parameters from all of the 356 tests performed to date with NHTSA's Inertial Parameter Measurement Device (IPMD) that have resulted in data thought to be of general interest. Additionally, the data base contains tilt table data from all 168 vehicle tests performed to date using NHTSA's Tilt Table. The paper also summarizes the history of modifications to the IPMD and discusses how these modifications have improved the accuracy of IPMD measurements.
Technical Paper

Measured Vehicle Center-of-Gravity Locations - Including NHTSA's Data Through 2008 NCAP

2010-04-12
2010-01-0086
This paper is a printed listing of public domain vehicle center-of-gravity (CG) location measurements conducted on behalf of the National Highway Traffic Safety Administration (NHTSA). This paper is an extension of the 1999 SAE paper titled “Measured Vehicle Inertia Parameters - NHTSA's Data Through November 1998” ( 1 ). The previous paper contained data for 496 vehicles. This paper includes data for 528 additional vehicles tested as part of NHTSA's New Car Assessment Program (NCAP) for year 2001 through year 2008 ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ). The previous data included center-of-gravity location and mass moments-of-inertia for nearly all of the entries. The NCAP involves only the CG location measurements; so the vehicles listed in this paper do not have inertia data. This paper provides a brief discussion of the entries provided in the tabular listings as well as the accuracy of CG height measurements.
Journal Article

Legibility: Back to the Basics

2011-04-12
2011-01-0597
The objective for this study was to revisit some of the known factors that affect legibility including font characteristics, as well as, contrast polarity, luminance contrast, and color contrast under high ambient conditions as specified in SAE J1757. The study focused on older drivers due to their increased visual needs and limitations. The study was conducted in 2 phases: 1) a study of font characteristics; character height, character width, and stroke width using a central composite design. Subjects read a group of letters and numerals displayed on a laptop display using occlusion goggles. The reading time (Total Shutter Open Time or TSOT), reading errors, and a subjective Readability Rating (using a 4 point scale "Very Easy," "Easy," "Difficult," "Very Difficult") were recorded. Licensed drivers in three age groups, 25 to 44 yrs, 45 to 59 yrs, and 61 to 91 yrs participated. The response surfaces were generated and compared to the character sizes recommended in ISO 15008.
X