Refine Your Search

Topic

Search Results

Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

Variation of Piston Ring Oil Film Thickness in an Internal Combustion Engine - Comparison Between Thrust and Anti-Thrust Sides

1998-02-23
980563
This paper describes a measurement method using laser induced fluorescence we have developed for simple simultaneous measurements of piston ring oil film thickness at plural points for internal combustion engines. The findings obtained by the measurements of oil film thickness on both thrust and anti-thrust sides of the piston for a mono-cylinder compact diesel engine using this new measurement method are also discussed in this paper. One of main findings is that the oil film thickness of each ring on both sides differs markedly in terms of the absolute value and the stroke- to-stroke variation. It is found that this difference in oil film thickness is caused by the difference in the amount of lubricating oil supplied to the oil ring, and the effect is greater than that of engine speed or load.
Technical Paper

Variation of Piston Friction Force and Ring Lubricating Condition in a Diesel Engine with EGR

1998-10-19
982660
Exhaust-gas recirculation (EGR) causes the piston rings and cylinder liners of a Diesel engine to suffer abnormal wear on the sliding parts. The present study aimed at making clear such abnormal wear structurally by examining the state of lubrication of the piston with a floating liner method, observing directly a visualized cylinder and experimenting on a Diesel engine for wear. As a result, it was confirmed that soot in EGR gas would change a lot the characteristics of the piston friction force. There are two mechanisms: one directly enters the sliding surfaces, and the other enters the ring rear, applying more load to them. It was also confirmed that the level of wear on the piston ring would vary to a large extent as the state of lubrication changed.
Technical Paper

The Effects of Crank Ratio and Crankshaft Offset on Piston Friction Losses

2003-03-03
2003-01-0983
A study was conducted to understand the effects the specifications of the crank-slider mechanism have on piston friction losses. The information obtained through the study is believed to be useful information for reducing the piston friction. A single-cylinder spark-ignited gasoline engine was designed and constructed to have not only a real-time piston friction measurement system using the floating liner method, but also provisions to facilitate changing the specifications of the crank-slider mechanism. This paper describes the study results obtained under various engine-operating conditions and reports the parametric test results of three crank ratios and five crankshaft-offset amounts tested.
Technical Paper

The Effect of Oil Ring Geometry on Oil Film Thickness in the Circumferential Direction of the Cylinder

1998-10-19
982578
This paper describes measurements of oil film thickness of piston ring packages which have different oil control rings. The oil film thickness measurements were taken at three points, namely, the piston thrust side, front side and rear side, by the Laser Induced Fluorescence Method(LIF). One of the main findings is that the oil film thickness on the thrust side varies greatly from cycle to cycle, while cyclic variations are smaller on the front and rear sides. This difference is due to the smaller inclination of the oil control rings on the front and rear sides, compared with that on the thrust side. It is also found that oil consumption has a good correlation with oil film thickness on the thrust side and that the thrust side oil film thickness becomes thinner as the oil ring becomes narrower.
Technical Paper

The Effect of Crankshaft Offset on Piston Friction Force in a Gasoline Engine

2000-03-06
2000-01-0922
Offsetting the crankshaft axis with respect to the cylinder axis has been thought to be a method to reduce piston side force[1]. Hence the piston friction is expected to be reduced. An automotive manufacturer has already used the crankshaft offset for a production gasoline engine to improve fuel economy. The authors have conducted research into the effect of crankshaft offset on the piston friction. A single-cylinder engine was modified to have a crankshaft offset. Piston frictional force was measured in real-time by using a floating liner method. In addition, laser-induced fluorescence (LIF) technique was employed to measure oil film thickness on the piston skirt area, and a gap sensor was used to measure piston motion. As a result, the authors concluded that the effect of crankshaft offset on piston friction could not be explained only by its effect on the piston side force. In accordance with the measurement results, crankshaft offset changed piston slap motion.
Technical Paper

Power Cylinder System Friction and Weight Optimization in High Performance Gasoline Engines

2009-06-15
2009-01-1958
An ultra-lightweight piston and conrod without small end bush, combined with a ring pack designed for minimized friction is analyzed and demonstrated as an optimized power cylinder system in a high performance gasoline engine. Component and system analysis for optimizing the design, materials used and design features are reviewed, along with durability, NVH and friction testing results. Results are compared to other benchmark power cylinder system components for weight, performance and value.
Technical Paper

Part 3: A Study of Friction and Lubrication Behavior for Gasoline Piston Skirt Profile Concepts

2009-04-20
2009-01-0193
This paper deals with the friction performance results for various new concept piston skirt profiles. The program was conducted under the assumption that friction performance varies by the total amount of oil available at each crank angle in each stroke and the instantaneous distribution of the oil film over the piston skirt area. In previous papers [1,2] it was that lower friction designs would be expected to show higher skirt slap noise. This paper discusses the correlation between friction and skirt slap for each new concept profile design. Finally, this paper explains the friction reduction mechanism for the test samples for each stroke of the engine cycle by observing the skirt movement and oil lubrication pattern using a visualization engine.
Technical Paper

Part 2: The Effects of Lubricating Oil Film Thickness Distribution on Gasoline Engine Piston Friction

2007-04-16
2007-01-1247
Due to increasing economic and environmental performance requirements of internal combustion engines, piston manufacturers now focus more on lower friction designs. One factor strongly influencing the friction behavior of pistons is the dynamic interaction between lubricating oil, cylinder bore and piston. Therefore, the dynamic effect of the oil film in the gap between the liner and piston has been studied, using a single cylinder engine equipped with a sapphire window. This single cylinder engine was also equipped with a floating liner, enabling real-time friction measurement, and directly linking the oil film behavior to friction performance of pistons.
Technical Paper

Part 1: Piston Friction and Noise Study of Three Different Piston Architectures for an Automotive Gasoline Engine

2006-04-03
2006-01-0427
The objective was to rank piston friction and noise for three piston architectures at three cold clearance conditions. Piston secondary motion was measured using four gap sensors mounted on each piston skirt to better understand the friction and noise results. One noticeable difference in friction performance from conventional designs was as engine speed increased the friction force during the expansion stroke decreased. This was accompanied by relatively small increases in friction force during the other strokes so Friction Mean Effective Pressure (FMEP) for the whole cycle was reduced. Taguchi's Design of Experiment method was used to analyze the variances in friction and noise.
Technical Paper

Oil Film Thickness Measurement and Analysis of a Three Ring Pack in an Operating Diesel Engine

2000-06-19
2000-01-1787
Oil film thicknesses of the piston top ring and the second ring of a truck diesel engine have been measured simultaneously by embedding capacitance type clearance sensors in the ring sliding surfaces. Owing to the above, several phenomena such as the variation in oil film thickness of each ring in one cycle, correlation between the rings, difference in oil film thickness between the thrust and counter thrust-sides, effects of engine operating conditions on oil film thickness, etc. have been determined. Efforts have been also made to analyze the causes of such phenomena according to the measured results of piston slap motion and ring motions, and the calculated results of oil film thickness.
Technical Paper

Method to improve scuffing resistance of nitrided rings

1997-12-31
973102
Surface scuffing related to gas nitrided piston rings is attracting more attention as the effective cylinder pressure is increased in the recent years. However, the mechanism behind scuffing induced in long-term operations remained unknown. This study focuses on clarifying the mechanism behind scuffing related to gas nitrided piston rings. In addition, application of a thin composite plated surface film containing dispersed particles is proposed as an effective measure for preventing surface scuffing during long-term operations. Furthermore, factors enabling maintenance of high scuffing resistance on the ring surface after the thin plated composite film wears off and the underlying nitrided surface is exposed were analyzed. The dominant factor was discovered to be the difference in the resulting sliding surface profile, after initial wear, between a ring surface with composite plating and a ring surface with only gas nitriding treatment.
Technical Paper

Measurement of Piston Frictional Force in Actual Operating Diesel Engine

1979-02-01
790855
Frictional force as a function of crank angle of a piston assembly and piston rings alone were measured after the following devices were developed. (1) A gas sealing device that did not affect the measuring values. (2) A device to minimize the effect of gas pressure on the cylinder head and block deformations. (3) A device to minimize the effect of piston slap force. From the measurement of the frictional force diagrams the following characteristics have been found. (1) Lubricating oil temperature has the greatest effect upon the frictional loss of the piston. (2) Piston friction does not increase to the point of becoming proportional to the engine speed. (3) Friction in the expansion stroke increases at high load by the piston slap phenomenon. But the increase of total losses are small because the duration is short. (4) Piston rings account for the majority of the entire frictional force of the piston.
Technical Paper

Influence of Clearance Between Piston and Cylinder on Piston Friction

1988-10-01
881621
It is desired to minimize clearance between the piston and the cylinder to reduce noise and suppress vibration. Although significant effort has been made for this purpose, increased piston friction force and the occurrence of seizure still prevent the ideal clearance from being realized. In order to determine the lower limit of the piston clearance, it is crucial to clarify the following unknowns; which part of piston contributes to friction increase as the piston clearance is decreased, during which phase of the piston motion the friction increase occurs, and how the piston clearance affects lubrication phenomena. Measurements of piston friction force under operating conditions were made by applying the Floating Liner Method(1),(2)* to a single-cylinder test gasoline engine. The measurement revealed how the piston friction varied as the piston clearance decreased. Lateral motion of the piston was also measured.
Technical Paper

Improvement of Piston Lubrication in a Diesel Engine By Means of Cylinder Surface Roughness

2004-03-08
2004-01-0604
Aiming at the improvement in piston lubrication and the reduction of piston friction loss under this study, piston friction forces of cylinders with different surface roughness and treatment methods have been measured by means of a floating liner method, and the piston surface conditions have been also observed. As a result, it is found that the piston lubrication can be markedly improved by reducing the cylinder surface roughness. It is also verified that the deterioration in lubrication can be reduced even if some low viscosity oil is used, and the effect on the friction loss reduction becomes greater by reducing the piston surface roughness. On the other hand, it is found that many small vertical flaws are generated on the cylinder surface by reducing the surface roughness. In order to cope with this problem, etching and DLC (Diamond Like Carbon) coating have been tested as the surface treatments. As a result, it is confirmed that DLC coating is effective for the above.
Technical Paper

Friction and Lubrication Characteristics of Piston Pin Boss Bearings of an Automotive Engine

1997-02-24
970840
The aim of this research was to analyze the lubrication conditions of piston pin boss bearings used in the press-fit piston pins of automobile gasoline engines. An original pin boss friction measuring device was developed and used to successfully obtain measurements. It was revealed that the friction force peaks twice every cycle at high engine loads, and non-fluid lubrication characteristics are displayed. The friction forces for various differing piston pins and pin boss bearings were analyzed, and it was shown that reducing piston pin length or thickness to reduce piston weight, or reducing the pin boss bearing clearance to reduce noise worsen the friction characteristics and increase the possibility of abnormal bearing friction as well as seizure.
Technical Paper

Effects of Post Injection on Piston Lubrication in a Common Rail Small Bore Diesel Engine

2005-05-11
2005-01-2166
The authors et al. developed a unique single cylinder diesel engine equipped with a floating liner device for the measurement of piston friction force, aimed at the clarification of the relationship between the multiple fuel injections and the state of piston lubrication. Using this engine, the effects of the post fuel injections on the state of piston lubrication have been checked under this study, according to the variation in the piston friction force. As a result, it is verified that the oil film on the cylinder near the top dead center is diluted immediately with the injected fuel, and that the piston lubrication deteriorates more than anticipated even for the case using the SAE 5W/30 oil, compared with the case where the SAE 0W/20 oil with a lower viscosity is used.
Technical Paper

Effects of Lubricating Oil Supply on Reductions of Piston Slap Vibration and Piston Friction

2001-03-05
2001-01-0566
This study has been conducted aiming at reductions of piston slap noise and piston friction loss, and effects of lubricating oil supply between the piston skirt and cylinder on diesel engine have been verified through a series of experiments. Namely, lubricating oil was supplied forcibly into the piston skirt from outside of engine, and its effects on the cylinder block vibration, piston friction force, slap motion and oil consumption have been measured. As a result, it has been verified that the supply of a small amount of oil (6mL/min) to the piston skirt reduces about 50 % of the block vibration caused by the piston slap motion in idling operation, and about 20 % of the piston friction loss in full load operation. Furthermore it has verified without giving any significant adverse effect on oil consumption.
Technical Paper

Effect of Top Rings on Piston Slap Noise

1995-10-01
952236
A recent increase in detergent additives to gasoline has resulted in an increase in the accumulation of deposits inside the engine's combustion chamber (this type of deposit will be hereinafter referred to as “CCD”;Combustion Chamber Deposit). Along with this tendency, authors have observed an engine noise generated during warm up, which may be attributable to the CCD accumulation. It was reported that the engine noise was identified as carbon knocking caused when the piston and cylinder head physically come in contact because of these CCDs(1X2) This paper deals with another noise generated by the CCD trapped between the piston ring and piston ring groove.
Technical Paper

Effect of Piston and Piston Ring Designs on the Piston Friction Forces in Diesel Engines

1981-09-01
810977
How much reduction in piston friction loss can be achieved by the piston design? Piston friction force measurements have been carried out using the measuring method developed by the authors to obtain the effects of piston clearance, surface roughness, lubricant and ring size and contact pressure on the piston friction forces. A particular emphasis is placed on the study of effects of the piston rings by the experimental and theoretical analyses, since friction forces of piston rings accounted for 3/4 or more of the total piston friction force.
X