Refine Your Search

Topic

Author

Search Results

Technical Paper

Reconstruction of Pediatric Occupant Kinematic Responses Using Finite Element Method in a Real-World Lateral Impact

2017-03-28
2017-01-1462
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinematic responses and injury mechanism. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Parameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, were analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
Technical Paper

On the Role of Cervical Facet Joints in Rear End Impact Neck Injury Mechanisms

1997-02-24
970497
After a rear end impact, various clinical symptoms are often seen in car occupants (e.g. neck stiffness, strain, headache). Although many different injury mechanisms of the cervical spine have been identified thus far, the extent to which a single mechanism of injury is responsible remains uncertain. Apart from hyperextension or excessive shearing, a compression of the cervical spine can also be seen in the first phase of the impact due to ramping or other mechanical interactions between the seat back and the spine. It is hypothesized that this axial compression, together with the shear force, are responsible for the higher observed frequency of neck injuries in rear end impacts versus frontal impacts of comparable severity. The axial compression first causes loosening of cervical ligaments making it easier for shear type soft tissue injuries to occur.
Technical Paper

Numerical Investigations of Interactions between the Knee-Thigh-Hip Complex with Vehicle Interior Structures

2005-11-09
2005-22-0005
Although biomechanical studies on the knee-thigh-hip (KTH) complex have been extensive, interactions between the KTH and various vehicular interior design parameters in frontal automotive crashes for newer models have not been reported in the open literature to the best of our knowledge. A 3D finite element (FE) model of a 50th percentile male KTH complex, which includes explicit representations of the iliac wing, acetabulum, pubic rami, sacrum, articular cartilage, femoral head, femoral neck, femoral condyles, patella, and patella tendon, has been developed to simulate injuries such as fracture of the patella, femoral neck, acetabulum, and pubic rami of the KTH complex. Model results compared favorably against regional component test data including a three-point bending test of the femur, axial loading of the isolated knee-patella, axial loading of the KTH complex, axial loading of the femoral head, and lateral loading of the isolated pelvis.
Technical Paper

Motion Analysis of the Mandible during Low-Speed, Rear-End Impacts using High-Speed X-rays

2005-11-09
2005-22-0004
There has been much debate over “whiplash”-induced temporomandibular joint (TMJ) dysfunction following low-speed, rear-end automobile collisions. While several authors have reported TMJ injury based on case studies post collision, there has been little biomechanical evidence showing that rear-end impact was the primary cause of such injury. The purpose of this study was to measure the relative translation between the upper and lower incisors in cadavers subjected to low-speed, rear-end impacts. High-speed x-ray images used for this analysis were reported previously for the analysis of cadaveric cervical spine kinematics during low-speed, rear-end impacts. The cadavers were positioned at various seatback angles and body postures, producing an overall picture of various seating scenarios.
Technical Paper

Mechanisms of Traumatic Rupture of the Aorta and Associated Peri-isthmic Motion and Deformation

2008-11-03
2008-22-0010
This study investigated the mechanisms of traumatic rupture of the aorta (TRA). Eight unembalmed human cadavers were tested using various dynamic blunt loading modes. Impacts were conducted using a 32-kg impactor with a 152-mm face, and high-speed seatbelt pretensioners. High-speed biplane x-ray was used to visualize aortic motion within the mediastinum, and to measure deformation of the aorta. An axillary thoracotomy approach was used to access the peri-isthmic region to place radiopaque markers on the aorta. The cadavers were inverted for testing. Clinically relevant TRA was observed in seven of the tests. Peak average longitudinal Lagrange strain was 0.644, with the average peak for all tests being 0.208 ± 0.216. Peak intraluminal pressure of 165 kPa was recorded. Longitudinal stretch of the aorta was found to be a principal component of injury causation. Stretch of the aorta was generated by thoracic deformation, which is required for injury to occur.
Technical Paper

Mechanical Characterization of Porcine Abdominal Organs

2002-11-11
2002-22-0003
Typical automotive related abdominal injuries occur due to contact with the rim of the steering wheel, seatbelt and armrest, however, the rate is less than in other body regions. When solid abdominal organs, such as the liver, kidneys and spleen are involved, the injury severity tends to be higher. Although sled and pendulum impact tests have been conducted using cadavers and animals, the mechanical properties and the tissue level injury tolerance of abdominal solid organs are not well characterized. These data are needed in the development of computer models, the improvement of current anthropometric test devices and the enhancement of our understanding of abdominal injury mechanisms. In this study, a series of experimental tests on solid abdominal organs was conducted using porcine liver, kidney and spleen specimens. Additionally, the injury tolerance of the solid organs was deduced from the experimental data.
Technical Paper

Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-ray

2001-11-01
2001-22-0016
The principal focus of this study was the measurement of relative brain motion with respect to the skull using a high-speed, biplanar x-ray system and neutral density targets (NDTs). A suspension fixture was used for testing of inverted, perfused, human cadaver heads. Each specimen was subjected to multiple tests, either struck at rest using a 152-mm-diameter padded impactor face, or stopped against an angled surface from steady-state motion. The impacts were to the frontal and occipital regions. An array of multiple NDTs was implanted in a double-column scheme of 5 and 6 targets, with 10 mm between targets in each column and 80 mm between columns. These columns were implanted in the temporoparietal and occipitoparietal regions. The impacts produced peak resultant accelerations of 10 to 150 g, and peak angular accelerations between 1000 and 8000 rad/s2. For all but one test, the peak angular speeds ranged from 17 to 22 rad/s.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

High Rate Mechanical Properties of the Hybrid Iii and Cadaveric Lumbar Spines in Flexion and Extension

1999-10-10
99SC18
In a previous study by Demetropoules et al., (1998), it was shown that both cadaveric and Hybrid III lumbar spines exhibit loading rate dependency when loaded in a quasi-static mode up to a velocity of 100 mm/s. In these tests, the Hybrid III lumbar spines were generally found to have higher stiffnesses than the human lumbar spines, except in compression. This is probably due to the fact that muscle loading was not simulated when testing the human spines. Additionally, the speed previously used to test the spines was less than that typically seen in automotive crash environment. The purpose of this study was to use a high-rate testing machine to establish the flexion and extension stiffnesses of the human lumbar spine with simulated extensor muscle tone. Two Hybrid III lumbar spines were used to develop the test methodology and to obtain the response of the Hybrid III lumbar spines.
Technical Paper

Foot and Ankle Finite Element Modeling Using Ct-Scan Data

1999-10-10
99SC11
Although not life threatening in most cases, victims of lower extremity injuries frequently end up living with a poor quality of life. The implementations of airbag supplement restraint systems significantly reduce the incidence of head and chest injuries. However, the frequency of leg injuries remains high. Several finite element models of the foot and ankle have been developed to further the understanding of this injury mechanism. None of those models employed accurate geometry among various bony segments. The objective of this study is to develop a foot and ankle finite element model based on CT scan data so that joint geometry can be accurately represented. The model was validated against experimental data for several different configurations including typical car crash situations.
Journal Article

Finite Element Investigation of Seatbelt Systems for Improving Occupant Protection during Rollover Crashes

2009-04-20
2009-01-0825
The seatbelt system, originally designed for protecting occupants in frontal crashes, has been reported to be inadequate for preventing occupant head-to-roof contact during rollover crashes. To improve the effectiveness of seatbelt systems in rollovers, in this study, we reviewed previous literature and proposed vertical head excursion corridors during static inversion and dynamic rolling tests for human and Hybrid III dummy. Finite element models of a human and a dummy were integrated with restraint system models and validated against the proposed test corridors. Simulations were then conducted to investigate the effects of varying design factors for a three-point seatbelt on vertical head excursions of the occupant during rollovers. It was found that there were two contributing parts of vertical head excursions during dynamic rolling conditions.
Technical Paper

Experimental Validation of Pediatric Thorax Finite Element Model under Dynamic Loading Condition and Analysis of Injury

2013-04-08
2013-01-0456
Previously, a 10-year-old (YO) pediatric thorax finite element model (FEM) was developed and verified against child chest stiffness data measured from clinical cardiopulmonary resuscitation (CPR). However, the CPR experiments were performed at relatively low speeds, with a maximum loading rate of 250 mm/s. Studies showed that the biomechanical responses of human thorax exhibited rate sensitive characteristics. As such, the studies of dynamic responses of the pediatric thorax FEM are needed. Experimental pediatric cadaver data in frontal pendulum impacts and diagonal belt dynamic loading tests were used for dynamic validation. Thoracic force-deflection curves between test and simulation were compared. Strains predicted by the FEM and the injuries observed in the cadaver tests were also compared for injury assessment and analysis. This study helped to further improve the 10 YO pediatric thorax FEM.
Technical Paper

Effect of Vehicle Front End Profiles Leading to Pedestrian Secondary Head Impact to Ground

2013-11-11
2013-22-0005
Most studies of pedestrian injuries focus on reducing traumatic injuries due to the primary impact between the vehicle and the pedestrian. However, based on the Pedestrian Crash Data Study (PCDS), some researchers concluded that one of the leading causes of head injury for pedestrian crashes can be attributed to the secondary impact, defined as the impact of the pedestrian with the ground after the primary impact of the pedestrian with the vehicle. The purpose of this study is to understand if different vehicle front-end profiles can affect the risk of pedestrian secondary head impact with the ground and thus help in reducing the risk of head injury during secondary head impact with ground. Pedestrian responses were studied using several front-end profiles based off a mid-size vehicle and a SUV that have been validated previously along with several MADYMO pedestrian models.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Technical Paper

Development of a Finite Element Model of the Human Shoulder

2000-11-01
2000-01-SC19
Previous studies have hypothesized that the shoulder may be used to absorb some impact energy and reduce chest injury due to side impacts. Before this hypothesis can be tested, a good understanding of the injury mechanisms and the kinematics of the shoulder is critical for occupant protection in side impact. However, existing crash dummies and numerical models are not designed to reproduce the kinematics and kinetics of the human shoulder. The purpose of this study was to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanisms and the kinematics of the shoulder in side impact. Basic anthropometric data of the human shoulder used to develop the skeletal and muscular portions of this model were taken from commercial data packages. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder.
Technical Paper

Development of a Finite Element Model of the Human Lower Extremity for Analyses of Automotive Crash Injuries

2000-03-06
2000-01-0621
A finite element model of the human lower extremity has been developed to predict lower extremity injuries in full frontal and offset frontal impact. The model included 30bones from femur to toes. Each bone was modeled using crushable solid elements for the orbicular bone and damageable shell elements for the cortical bone. The models of the long bones for the lower extremities were validated against data obtained from quasi-static 3-pointbending tests by Yamada (1970). The ankle, knee and hip joints were modeled as bone-to-bone contacts and included major ligaments and tendons. The ankle model was validated against data obtained from quasi-staticdorsiflexion, inversion and eversion tests by Petit et al. (1996) and against data obtained from dynamic impactcadaveric tests by Kitagawa et al. (1998). The possibility of using this model to predict injuries was discussed.
Technical Paper

Development of a Finite Element Model of the Human Abdomen

2001-11-01
2001-22-0004
Currently, three-dimensional finite element models of the human body have been developed for frequently injured anatomical regions such as the brain, chest, extremities and pelvis. While a few models of the human body include the abdomen, these models have tended to oversimplify the complexity of the abdominal region. As the first step in understanding abdominal injuries via numerical methods, a 3D finite element model of a 50th percentile male human abdomen (WSUHAM) has been developed and validated against experimental data obtained from two sets of side impact tests and a series of frontal impact tests. The model includes a detailed representation of the liver, spleen, kidneys, spine, skin and major blood vessels.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Computational Study of the Contribution of the Vasculature on the Dynamic Response of the Brain

2002-11-11
2002-22-0008
Brain tissue architecture consists of a complex network of neurons and vasculature interspersed within a matrix of supporting cells. The role of the relatively suffer blood vessels on the more compliant brain tissues during rapid loading has not been properly investigated. Two 2-D finite element models of the human head were developed. The basic model (Model I) consisted of the skull, dura matter, cerebral spinal fluid (CSF), tentorium, brain tissue and the parasagittal bridging veins. The pia mater was also included but in a simplified form which does not correspond to the convolutions of the brain. In Model II, major branches of the cerebral arteries were added to Model I. Material properties for the brain tissues and vasculature were taken from those reported in the literature. The model was first validated against intracranial pressure and brain/skull relative motion data from cadaveric tests.
X