Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

UniTire Model for Tire Forces and Moments under Combined Slip Conditions with Anisotropic Tire Slip Stiffness

2013-09-24
2013-01-2362
The tire mechanics characteristics are essential for analysis, simulation and control of vehicle dynamics. This paper develops the UniTire model for tire forces and moments under combined slip conditions with anisotropic tire slip stiffness. The anisotropy of tire slip stiffness, which means the difference of tire longitudinal slip stiffness and cornering stiffness, will cause that the direction of tire resultant shear stress in adhesion region is different from that in sliding region. Eventually the tire forces and moments under combined slip conditions will be influenced obviously. The author has proposed a “direction factor” before to modify the direction of resultant force in the tire-road contact patch, which can describe tire forces at cornering/braking combination accurately. However, the aligning moments which are very complicated under combined slip conditions are not considered in previous analysis.
Technical Paper

Tire Roller Contact Model for Simulation of Vehicle Vibration Input

1993-11-01
932008
To improve the quantitative accuracy of vehicle vibration studies, a roller contact tire model with the geometric filtering concept and a method to determine the effective road input are proposed. Computer simulation with the 13 DOF vehicle model for a light truck, based on two different tire models, and relevant outdoor tests for measuring the vehicle accelerations of both sprung and unsprung masses are presented. Comparisons of test data and simulation results show that the roller contact tire model renders much better simulation accuracy than the single point contact tire model. It is concluded that the roller contact tire model is a powerful concept which acts as a geometric filter, giving a simple method to calculate the enveloping effects of tires and the effective road elevation input.
Technical Paper

The Digital Image Correlation Technique Applied to Hole Drilling Residual Stress Measurement

2014-04-01
2014-01-0825
The residual stresses found in components are mainly due to thermal, mechanical and metallurgical changes of material. The manufacturing processes such as fabrication, assembly, welding, rolling, heat treatment, shot peening etc. generate residual stresses in material. The influence of residual stress can be beneficial or detrimental depending on nature and distribution of the residual stress in material. In general, the compressive residual stress can increase the fatigue life of material because it provides greater resistance for crack initiation and propagation. A significant number of improvements for residual stress measurement techniques have occurred in last few decades. The most popular technique of residual stress measurement is based on the principle of strain gage rosette and hole drilling (ASTM E837-01, destructive).
Technical Paper

Simulations of Tire Cornering Properties in Non-Steady State Conditions

1998-02-01
980254
Simulations of tire cornering properties with small-amplitude lateral inputs are carried out in non-steady state conditions. The simulation algorithm is derived and the discrete expressions are presented in detail. Based on the simulations, lateral force and aligning moment can be calculated numerically with time-varying yaw angle and lateral displacement as inputs in spatial domain. The flexibility of both tread and carcass along with tire width is taken into account effectively in the simulations, in which the flexibility of carcass includes translating, bending and twisting flexibility. The simulations in non-dimensional form are associated with four tire structure parameters only, which are non-dimensional parameters reflecting the characteristics of tire stiffness, tire width and contact length. Simulation results are validated by test data from step lateral inputs tests. Several typical simulation results are provided.
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

2000-03-06
2000-01-0694
A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
Journal Article

Modeling Combined Braking and Cornering Forces Based on Pure Slip Measurements

2012-09-24
2012-01-1924
A novel predictable tire model has been proposed for combined braking and cornering forces, which is based on only a few pure baking and pure cornering tests. It avoids elaborate testing of all kinds of combinations of braking and side forces, which are always expensive and time consuming. It is especially important for truck or other large size tires due to the capability constraints of tire testing facilities for combined shear forces tests. In this paper, the predictive model is based on the concept of slip circle and state stiffness method. The slip circle concept has been used in the COMBINATOR model to obtain the magnitude of the resultant force under combined slip conditions; however the direction assumption used in the COMBINATOR is not suitable for anisotropic tire slip stiffness.
Technical Paper

Key Items in Tire Non-Steady State Test

2002-07-09
2002-01-2231
In the paper, the Flat Plank Tire Tester of Changchun Automobile Institute is introduced. This paper, according to practical experiences, generalizes some issues in the tire's non-steady state test. In the non-steady state test, it must be assured that the footprint centerline of tire coincides with that of slid platform, which guarantees no sliding motion between tire and slid platform during the movement. Due to tire taper effect and inhomogeneous tire material, when its side slip angle is zero, side force and aligning torque are not zeros, but have initial values. Here two approaches are discussed to eliminate the side force and aligning torque. Besides, other factors in the test are put forward for discussion. Eliminating the interference can obviously improve the test accuracy. This paper also provides test curves of both pure side slip angle input and pure yaw angle input.
Technical Paper

Analysis of Non-Steady State Tire Cornering Properties Based on String-Concept Deformation and Geometric Relationship of Contact Patch

2007-04-16
2007-01-1514
Vehicle handling and stability performances are greatly determined by non-steady state (NSS) tire cornering properties. Analytical derivation of NSS tire cornering models are presented in this paper based on Pacejka's string-concept assumption, in which carcass is assumed to be a stretched string with lateral deformation and lateral relaxation. The lateral inputs of the models are either displacement-based (lateral displacement and yaw angle) or slip-based (slip angle and turn slip). The transient deformations in spatial domain in both longitudinal and lateral directions are obtained directly from geometric relationship of contact patch. The additional self-aligning moment due to longitudinal deformation of contact patch after effect of tire width is considered is also achieved according to geometric relationship of contact patch in longitudinal direction and two transient geometric conditions of contact point.
Technical Paper

Analysis of Automotive Handling Based on Tire Cornering Properties in Non-Steady State Conditions

1999-11-15
1999-01-3758
Non-steady state (NSS) tire cornering properties show obvious differences from steady state (SS) tire cornering properties. A two-DOF automobile model with steer angle as an input is established based on the known NSS tire model considering complex carcass deformation. The tire model can certainly be applied to modelling of a multi-DOF automobile system. The frequency responses of lateral acceleration and yaw rate are then derived. An evaluation index, amplitude-frequency characteristic of relative error (AFCRE), is used to analyze the influences of NSS front wheels (FW) and/or rear wheels (RW) on automotive handling. The influences of NSS FW are much greater than those of NSS RW only on automotive handling. The established automobile model can also be applied to other similar studies of vehicle dynamics.
Technical Paper

An Empirical Tire Model for Non-Steady State Side Slip Properties

2003-11-10
2003-01-3414
In this paper, on the basis of the extant semi-empirical tire models of non-steady state with pure yaw angle input and pure side slip angle input, two empirical tire models of non-steady state side slip properties are established, one is pure yaw angle input, the other is pure side slip angle input, and both of them have been verified by test data. These two models can be used to approximately express tire force within low frequency. They have their own advantages, and make up for the disadvantages of existing tire models. They provide more choice for the simulation of vehicle dynamics.
Technical Paper

A Theoretical Model of Non-Steady State Tire Cornering Properties and its Experimental Validation

1997-11-17
973192
Based on the tire cornering properties in steady state condition, a theoretical model of non-steady state tire cornering properties (NSSTCP) with small lateral inputs is presented. The outputs of the model are lateral force and aligning moment, while the inputs are yaw angle and lateral displacement (or turn slip and slip angle). The deformation characteristics of contact patch are analyzed in non-steady state condition. The flexibility of tread and that of carcass are both taken into account. The deformation of carcass is assumed to compose of translating part, bending part and twisting part. The tests of NSSTCP including pure yaw motion and pure lateral motion are realized with step inputs of yaw angle and slip angle respectively and test data is then transformed into frequency domain. The model is validated through comparing the computational results with test frequency response.
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Technical Paper

A Non-steady and Non-linear Tire Model Under Large Lateral Slip Condition

2000-03-06
2000-01-0358
The objective of this study is to develop a non-steady & non-linear tire model for vehicle dynamic simulation and control for extreme lateral slip condition. This model is provided in a semi-analytical form based on the theoretical non-steady state model, presented at 2nd IAVSD Tyre Conference, Feb. 1997[6]. The tire model is based on a quasi-steady state concept, which generates the dynamic forces and moment according to the dynamic effective slip ratio cooperating with the Unified Semi-Empirical Tire Model for Steady State. Satisfying the theoretical boundary conditions at two sides (lowest & highest) in frequency domain, the tire model is capable of describing the transient force & moment characteristics of tires in higher frequency range, Comparing with the “Linear Approximation” model, presented at 4th AVEC Conference, Sept. 1998[4].
X