Refine Your Search

Search Results

Journal Article

UniTire Model for Tire Forces and Moments under Combined Slip Conditions with Anisotropic Tire Slip Stiffness

2013-09-24
2013-01-2362
The tire mechanics characteristics are essential for analysis, simulation and control of vehicle dynamics. This paper develops the UniTire model for tire forces and moments under combined slip conditions with anisotropic tire slip stiffness. The anisotropy of tire slip stiffness, which means the difference of tire longitudinal slip stiffness and cornering stiffness, will cause that the direction of tire resultant shear stress in adhesion region is different from that in sliding region. Eventually the tire forces and moments under combined slip conditions will be influenced obviously. The author has proposed a “direction factor” before to modify the direction of resultant force in the tire-road contact patch, which can describe tire forces at cornering/braking combination accurately. However, the aligning moments which are very complicated under combined slip conditions are not considered in previous analysis.
Technical Paper

UniTire Model for Tire Cornering Properties under Varying Traveling Velocities

2016-09-27
2016-01-8037
The tire mechanics characteristics are essential for analysis and control of vehicle dynamics. Basically, the effects of sideslip, longitudinal slip, camber angle and vertical load are able to be represented accurately by current existing tire models. However, the research of velocity effects for tire forces and moments are still insufficient. Some experiments have demonstrated that the tire properties actually vary with the traveling velocity especially when the force and moment are nearly saturated. This paper develops an enhanced brush tire model and the UniTire semi-physical model for tire forces and moments under different traveling velocities for raising need of advanced tire model. The primary effects of velocity on tire performances are the rubber friction distribution characteristics at the tire-road interface.
Technical Paper

Tire Roller Contact Model for Simulation of Vehicle Vibration Input

1993-11-01
932008
To improve the quantitative accuracy of vehicle vibration studies, a roller contact tire model with the geometric filtering concept and a method to determine the effective road input are proposed. Computer simulation with the 13 DOF vehicle model for a light truck, based on two different tire models, and relevant outdoor tests for measuring the vehicle accelerations of both sprung and unsprung masses are presented. Comparisons of test data and simulation results show that the roller contact tire model renders much better simulation accuracy than the single point contact tire model. It is concluded that the roller contact tire model is a powerful concept which acts as a geometric filter, giving a simple method to calculate the enveloping effects of tires and the effective road elevation input.
Technical Paper

Tire Carcass Camber and its Application for Overturning Moment Modeling

2013-04-08
2013-01-0746
The properties of contact patch are key factors for tire modeling. Researchers have paid more attention to the contact patch shape and vertical pressure distribution. Some innovative concepts, such as Local Carcass Camber, have been presented to explain special tire modeling phenomena. For a pragmatic tire model, a concise model structure and fewer parameters are considered as the primary tasks for the modeling. Many empirical tire models, such as the well-known Magic Formula model, would become more complex to achieve satisfactory modeling accuracy, due to increasing number of input variables, so the semi-empirical or semi-physical modeling method becomes more attractive. In this paper, the concept of Tire Carcass Camber is introduced first. Different from Local Carcass Camber, Tire Carcass Camber is an imaginary camber angle caused only by lateral force on the unloaded tire.
Technical Paper

Time-Dependent Tire-Snow Modeling for Two-Dimensional Slip Conditions

2006-04-03
2006-01-1168
Snow-covered ground severely affects vehicle mobility in cold regions due to low friction coefficients and snow sinkage. Simulation and evaluation of vehicle mobility in cold regions require real-time friendly tire-snow interaction models that are applicable for quasi-real driving conditions. Recently, we have developed tire-snow dynamics models that are snow depth dependent, sinkage dependent and normal load dependent. The number of model parameters is reduced through theoretical analysis of normal indentation, contact pressure and shear stress within the tire-snow interface. In-plane and out-of-plan motion resistances and traction forces (gross traction and net traction) are analytically calculated for combined slip conditions.
Technical Paper

The Research of Tire Mechanics at Lower-Speed for Interactive Developing

2015-03-30
2015-01-0081
With the development of computer and vehicle research to high frequency, the driving simulator plays an important role on vehicle research and pre-development. The driving simulator have already been used for research about human factors, advanced active system (ABS, ESP et al), the vehicle dynamics and intelligent transportation systems (ITS) et al. The crucial requirement for a driving simulator is that it should have realistic behavior. The realistic behavior base on high-fidelity dynamics models especially tire model. “Tire/road” model is of special importance model for its influence on vehicle performances. The forces for accelerating, braking and steering are all came from tire road contact. The simulator simulation faces all possible driving scenes as driving in the real word, like parking on the hill, stop and start again, sharp steering and sharp braking et al.
Technical Paper

The Quasi-Instantaneous Engine Output Torque Model Based on Indicator Diagram

2014-04-01
2014-01-1083
High-quality dynamics model is one of the trends of vehicle dynamics model research and development. The engine generates high frequency excitation during operation, which may cause dynamic response in full vehicle. However, the widely-used internal-combustion engine model in vehicle dynamics simulation is steady-state model, which can't describe the fluctuation of engine drive torque along with the crankshaft angle. Consequently, this article concentrates on the modeling of instantaneous engine drive torque in order to improve the dynamic performance of the vehicle model. The paper has built the quasi-instantaneous engine model based on indicator diagram. To satisfy the requirement of real-time simulation, dynamically equivalent piston-connecting rod model is built and fast interpolation algorithm is researched. The linkage was simplified to spring and damper, and decoupled the piston translation and the crank rotation movements.
Technical Paper

Simulations of Tire Cornering Properties in Non-Steady State Conditions

1998-02-01
980254
Simulations of tire cornering properties with small-amplitude lateral inputs are carried out in non-steady state conditions. The simulation algorithm is derived and the discrete expressions are presented in detail. Based on the simulations, lateral force and aligning moment can be calculated numerically with time-varying yaw angle and lateral displacement as inputs in spatial domain. The flexibility of both tread and carcass along with tire width is taken into account effectively in the simulations, in which the flexibility of carcass includes translating, bending and twisting flexibility. The simulations in non-dimensional form are associated with four tire structure parameters only, which are non-dimensional parameters reflecting the characteristics of tire stiffness, tire width and contact length. Simulation results are validated by test data from step lateral inputs tests. Several typical simulation results are provided.
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

2000-03-06
2000-01-0694
A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
Technical Paper

Predictive Semi-Analytical Model for Tire-Snow Interaction

2005-04-11
2005-01-0932
There is a scarcity of comprehensive tire-snow interaction models for combined (longitudinal and lateral) slips. Current tire-snow interaction empirical and finite element models mostly focus on force-slip relationships in the longitudinal direction only, following the approach used for tire-soil interaction models. One of the major differences between tire-snow and tire-soil interactions is that the former is typically depth-dependent, especially for shallow snow. Our approach in the modeling of tire-snow interaction is to rely on the underlying physics of the phenomena, wherever we could, and use test data (or finite element simulation results in the absence of test data) to calibrate the required model parameters. We also make contact with on-road models and extend them for off-road applications.
Technical Paper

Prediction of Tire-Snow Interaction Forces Using Metamodeling

2007-04-16
2007-01-1511
High-fidelity finite element (FE) tire-snow interaction models have the advantage of better understanding the physics of the tire-snow system. They can be used to develop semi-analytical models for vehicle design as well as to design and interpret field test results. For off-terrain conditions, there is a high level of uncertainties inherent in the system. The FE models are computationally intensive even when uncertainties of the system are not taken into account. On the other hand, field tests of tire-snow interaction are very costly. In this paper, dynamic metamodels are established to interpret interaction forces from FE simulation and to predict those forces by using part of the FE data as training data and part as validation data. Two metamodels are built based upon the Krieging principle: one has principal component analysis (PCA) taken into account and the other does not.
Technical Paper

Off-road Vehicle Dynamic Simulation Based on Slip-Shifted On-road Tire Handling Model

2008-04-14
2008-01-0771
In this research, off-road vehicle simulation is performed with tire-soil interaction model. The predictive semi-analytical model, which is originally developed for tire-snow interaction model by Lee [4], is applied as a tire-soil interaction model and is implemented to MSC/ADAMS, commercial multi-body dynamic software. It is applied to simulate the handling maneuver of military vehicle HMMWV. Two cases are simulated with Michigan sandy loam soil property. Each case has two maneuvers, straight-line brake and step steer (J-turn). First, tire-soil interaction model and conventional on-road tire model are simulated on the flat road of the same frictional coefficient. The proposed tire-soil interaction model provided larger force under the same slip. Second, the same maneuvers are performed with real off-road frictional coefficient. The proposed tire-soil model can be validated and the behavior of the off-road vehicle can be identified through two simulation cases.
Journal Article

Modeling Combined Braking and Cornering Forces Based on Pure Slip Measurements

2012-09-24
2012-01-1924
A novel predictable tire model has been proposed for combined braking and cornering forces, which is based on only a few pure baking and pure cornering tests. It avoids elaborate testing of all kinds of combinations of braking and side forces, which are always expensive and time consuming. It is especially important for truck or other large size tires due to the capability constraints of tire testing facilities for combined shear forces tests. In this paper, the predictive model is based on the concept of slip circle and state stiffness method. The slip circle concept has been used in the COMBINATOR model to obtain the magnitude of the resultant force under combined slip conditions; however the direction assumption used in the COMBINATOR is not suitable for anisotropic tire slip stiffness.
Technical Paper

Key Items in Tire Non-Steady State Test

2002-07-09
2002-01-2231
In the paper, the Flat Plank Tire Tester of Changchun Automobile Institute is introduced. This paper, according to practical experiences, generalizes some issues in the tire's non-steady state test. In the non-steady state test, it must be assured that the footprint centerline of tire coincides with that of slid platform, which guarantees no sliding motion between tire and slid platform during the movement. Due to tire taper effect and inhomogeneous tire material, when its side slip angle is zero, side force and aligning torque are not zeros, but have initial values. Here two approaches are discussed to eliminate the side force and aligning torque. Besides, other factors in the test are put forward for discussion. Eliminating the interference can obviously improve the test accuracy. This paper also provides test curves of both pure side slip angle input and pure yaw angle input.
Technical Paper

Interfacial Forces Between Tire and Snow Under Different Snow Depths

2006-04-03
2006-01-0496
All the frictional forces developed from tire-snow interfaces are closely associated with snow depth and snow sinkage. One of the important differences between tire-soil interaction and tire-snow interaction is that the latter is explicitly snow depth dependent. Based on our established depth-dependent upper bound indentation model, the effects of snow depth on tire-snow interaction are presented in this paper. Snow is considered as a pressure-sensitive Drucker-Prager material. The required snow material parameters of the model are Drucker-Prager material constants only. Snow sinkages, for longitudinal slip close to zero, under different snow depths are numerically solved through the sinkage solver. The comparison between sinkage obtained analytically and the sinkage computed from finite element simulation is very good.
Technical Paper

Driver Fuzzy Decision Making Model of Vehicle Preview Course

2000-08-21
2000-01-3057
The behavior of driver course decision making is analyzed with the theory of system fuzzy decision making, and some factors that influence this behavior are studied also. Based on these, a fuzzy decision making model of driver dynamically determining vehicle preview course is given. This model can simulate the driver's control behavior of deciding the vehicle preview course in the process of driver handling the vehicle, based on the feasible region of front road. Taking advantage of fuzzy decision making theory's character, the model can describe many decision criteria such as driving safety, driving handiness and driving legality. The simulation results show that the model can be directly applied into the simulation of driver-vehicle-road closed-loop system and the research of intelligent vehicle.
Technical Paper

Developmental Driver Model for Long Vehicles Based on Preview-Follower Theory

2018-08-07
2018-01-1629
A long vehicle is more difficult to drive than a short one, but the mechanism of this phenomenon is still ambiguous. This paper will devote main effort to elaborate this phenomenon based on the theory of preview-follower driver model. Drivers always hope that the vehicle center can travel according to a predetermined trajectory. However, there is often a deviation between the vehicle center predicted by the driver and the actual center. As for this phenomenon, a conception of driver preview eccentricity is proposed. In order to analyze the influence of the proposed conception on vehicle driving track, a multi-axle steering vehicle model is built and some basic expressions of important parameters are deduced from this model firstly. Then, the developmental driver model with the factor of preview eccentricity based on preview-follower theory is established in the state of low velocity quasi-static. Subsequently, this model for long vehicles is extended to a dynamic driver model.
Technical Paper

Development of Leaf Spring Kinematical Model and Its Applications in Improvement of Truck Braking and Steering Analysis

1991-11-01
912566
This paper presents a general kinematical model for all variety of leaf springs, including traditional laminated, asymmetrical, and tapered leaf springs, to calculate the longitudinal and winding deformations of axles during bouncing, braking and traction, which may introduce additional steering effects or variations of roll-steer property of a vehicle. Some experiments were introduced to verify the model. Accordingly, braking performance of a light truck has been improved.
Journal Article

Application of Stochastic Model Predictive Control to Modeling Driver Steering Skills

2016-04-05
2016-01-0462
With the development of the advanced driver assistance system and autonomous vehicle techniques, a precise description of the driver’s steering behavior with mathematical models has attracted a great attention. However, the driver’s steering maneuver demonstrates the stochastic characteristic due to a series of complex and uncertain factors, such as the weather, road, and driver’s physiological and psychological limits, generating negative effects on the performance of the vehicle or the driver assistance system. Hence, this paper explores the stochastic characteristic of driver’s steering behavior and a novel steering controller considering this stochastic characteristic is proposed based on stochastic model predictive control (SMPC). Firstly, a search algorithm is derived to describe the driver’s road preview behavior.
Technical Paper

Analysis of the STI Tire Model

2002-05-07
2002-01-1579
The STI (System Technology Inc.) tire model is one of the most important semi-empirical (steady-state) tire models currently applied in the vehicle dynamics simulation software package of the National Advanced Driving Simulator (NADS). The STI tire model is presented originally based on tire contact length directly and the contact length is required to provide. Based on the concepts of nominal slip in both longitudinal and lateral directions, the STI tire model is analyzed and rewritten. It shows that the STI tire model does not actually depend on the contact length. Meanwhile, the model parameters are partially assigned new physical definitions, for example, static/dynamic stiffness and shape factors. Some simplified expressions are given based on further assumption conditions. The simplified expressions are also obtained regarding longitudinal slip at arbitrary speeds (including low speed, zero speed and stand still), which is originally presented by Bernard.
X