Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Simulations of In-Cylinder Processes in a Diesel Engine Operated with Post-Injections Using an Extended CMC Model

2014-10-13
2014-01-2571
In this study, numerical simulations of in-cylinder processes associated to fuel post-injection in a diesel engine operated at Low Temperature Combustion (LTC) have been performed. An extended Conditional Moment Closure (CMC) model capable of accounting for an arbitrary number of subsequent injections has been employed: instead of a three-feed system, the problem has been described as a sequential two-feed system, using the total mixture fraction as the conditioning scalar. A reduced n-heptane chemical mechanism coupled with a two-equation soot model is employed. Numerical results have been validated with measurements from the optically accessible heavy-duty diesel engine installed at Sandia National Laboratories by comparing apparent heat release rate (AHRR) and in-cylinder soot mass evolutions for three different start of main injection, and a wide range of post injection dwell times.
Technical Paper

Modeling of Ignition and Early Flame Development with Respect to Large Diesel Engine Simulation

1998-05-04
981451
A recently developed auto-ignition model based on a single transport equation in combination with a reduced kinetic scheme has been validated and tested in combination with a cascade jet and droplet breakup model. The validation has been performed by comparing ignition locations and delays for various thermodynamic conditions with experimental data from a high-pressure combustion cell. Also for medium-size diesel engine applications, predictions of ignition delay are in good agreement with experimental observations. In addition, a new approach to the modeling of the early flame development in diesel engine combustion is introduced. The reaction rate in the transition phase from the premixed to the mixing-controlled combustion mode is determined by means of a sub-grid scale model, which describes the evolution of a turbulent diffusion flame. The model has been tested during the early combustion phase of a medium-size, medium-speed DI diesel engine.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of Wall Film Dynamics in an Optically Accessible GDI Research Engine

2019-09-09
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser-Induced Fluorescence (LIF) measurements were performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (1000 and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) were varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, showing the wall-film dynamics in terms of spatial extent, thickness and temperature.
Technical Paper

Experimental Investigation on the Gas Jet Behavior for a Hollow Cone Piezoelectric Injector

2014-10-13
2014-01-2749
Direct injection of natural gas in engines is considered a promising approach toward reducing engine out emissions and fuel consumption. As a consequence, new gas injection strategies have to be developed for easing direct injection of natural gas and its mixing processes with the surrounding air. In this study, the behavior of a hollow cone gas jet generated by a piezoelectric injector was experimentally investigated by means of tracer-based planar laser-induced fluorescence (PLIF). Pressurized acetone-doped nitrogen was injected in a constant pressure and temperature measurement chamber with optical access. The jet was imaged at different timings after start of injection and its time evolution was analyzed as a function of injection pressure and needle lift.
X