Refine Your Search


Search Results

Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Journal Article

The Measurement of Penetration Length of Diesel Spray by Using Background Oriented Schlieren Technique

The measurement of spray penetration length is one of crucial tasks for understanding the characteristics of diesel spray and combustion. For this reason, many researchers have devised various measurement techniques, including Mie scattering, schlieren photography, and laser induced exciplex fluorescence (LIEF). However, the requirements of expensive lasers, complicated optics, delicate setups, and tracers that affect fuel characteristics have been disadvantages of previous techniques. In this study, the background-oriented schlieren (BOS) technique is employed to measure the vapor penetration length of diesel spray for the first time. The BOS technique has a number of benefits over the previous techniques because of its quantitative, non-intrusive nature which does not require lasers, mirrors, optical filters, or fuel tracers.
Technical Paper

The Effects of Spray Angle and Piston Bowl Shape on Diesel Engine Soot Emissions Using 3-D CFD Simulation

In an HSDI Diesel engine, fuel can be injected to the combustion chamber earlier as a strategy to reduce NOx and soot emissions. However, in the case of early injection the in-cylinder pressure and temperature during injection are much lower than those of normal injection conditions. As a result, wall impingement can occur if the conventional spray angle and piston bowl shape are maintained. In this study, 3-D CFD simulation was used to modify the spray angle of the injector and the piston bowl shape so that wall impingement was minimized, and soot emissions were reduced. The wall impingement model was used to simulate the behavior of impinged droplets. In order to predict the performance and emissions of the engine, a flamelet combustion model with the kinetic chemical mechanism for NOx and soot was used. A reduction in soot emissions was achieved with the modification of the spray angle and piston bowl shape.
Technical Paper

The Effect of Liquid Fuel on the Cylinder Liner on Engine-Out Hydrocarbon Emissions in SI Engines

The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz cylinder liner in an SI engine test rig. In addition, comparing visualization results with the trend of hydrocarbon emissions in this engine, the effect of cylinder wall-wetting during a simulated cold start and warmed-up condition was investigated with the engine experiment. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized.
Technical Paper

The Development of Real-time NOx Estimation Model and its Application

To meet the stringent emission regulations on diesel engines, engine-out emissions have been lowered by adapting new combustion concepts such as low-temperature combustion and after-treatment systems have also been used to reduce tailpipe emissions. To optimize the control of both in-cylinder combustion and the efficiency of an after treatment system to reduce NOx, the amount of real-time NOx emissions should be determined. Therefore, in previous studies, the authors developed a real-time NO estimation model based on the in-cylinder pressure and the data available from the ECU during engine operation. The model was evaluated by comparing its results with a CFD model, which agreed well. Then, the model was implemented on an embedded system which allows real-time applications, and was verified on a 2.2-liter diesel engine. The model showed good agreement with the experimental results at various steady-state conditions and simple transient conditions.
Technical Paper

Study on the Effects of the In-Cylinder EGR Stratification on NOx and Soot Emissions in Diesel Engines

Much research has been devoted to reducing NOx and soot emissions simultaneously in diesel engines. The low temperature combustion (LTC) concept has the potential to reduce these emissions at the same time, but it has limitations to its commercialization. In-cylinder EGR stratification is another combustion concept meant to reduce both types of emissions simultaneously using non-uniform in-cylinder EGR gas distribution. The EGR stratification concept uses a locally high EGR region of the in-cylinder so that the emissions can be reduced without increasing the overall EGR rate. In this study, the EGR stratification concept was improved with a CFD-based analysis. First, a two-step piston was developed to maximize the stratified EGR effect. Then, the feasibility of combustion and emission control by stratified EGR was evaluated under cases of artificially distributed EGR stratification and conventional diesel engine conditions.
Technical Paper

Study on the Correlation between the Heat Release Rate and Vibrations from a Diesel Engine Block

In this study, a correlation between the maximum heat release rate and vibrations from a diesel engine block was derived, and a methodology to determine the maximum heat release rate is presented. To investigate and analyze the correlation, an engine test and an actual road vehicle test were performed using a 1.6-L diesel engine. By varying the engine speed, load and main injection timing, the vibration signals from the engine block were measured and analyzed using a continuous wavelet transform (CWT). The results show that the maximum heat release rate has a strong correlation with the magnitude of the vibrations. A specific bandwidth, the vibration signals between 0.3∼1.5 kHz, was affected by the variation in the heat release rate. The vibrations excited by combustion lasted over 50 CAD; however, the signals during the period of 35 CAD after the start of injection had a dominant effect on the maximum heat release rate.
Technical Paper

Study of LES Quality Criteria in a Motored Internal Combustion Engine

In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
Technical Paper

Reduced Chemical Kinetic Model of DME for HCCI Combustion

Homogeneous Charge Compression Ignition combustion engines could have a thermal efficiency as high as that of conventional compression-ignition engines and the production of low emissions of ultra-low oxides of NOx and PM. HCCI engines can operate on most alternative fuels, especially, dimethyl ether which has been tested as possible diesel fuel for its simultaneously reduced NOx and PM emissions. However, to adjust HCCI combustion to practical engines, the main problem about the HCCI engine must be solved; control of its ignition timing and burn rate over a range of engine speeds and loads. Detailed chemical kinetic modeling has been used to predict the combustion characteristics. But it is difficult to apply detailed chemical kinetic mechanism to simulate practical engines because of its high complexity coupled with multidimensional fluid dynamic models. Thus, reduced chemical kinetic modeling is desirable.
Technical Paper

Prediction of In-Cylinder Pressure for Light-Duty Diesel Engines

In recent years, emission regulations have been getting increasingly strict. In the development of engines that comply with these regulations, in-cylinder pressure plays a fundamental role, as it is necessary to analyze combustion characteristics and control combustion-related parameters. The analysis of in-cylinder pressure data enables the modelling of exhaust emissions in which characteristic temperature can be derived from the in-cylinder pressure, and the pressure can be used for other investigations, such as optimizing efficiency and emissions through controlling combustion. Therefore, a piezoelectric pressure sensor to measure in-cylinder pressure is an essential element in the engine research field. However, it is difficult to practice the installation of this pressure sensor on all engines and on-road vehicles owing to cost issues.
Technical Paper

Numerical Study on the Multiple Injection Strategy in Diesel Engines using a Modified 2-D Flamelet Model

The flamelet model is a widely used combustion model that demonstrates a good prediction of non-premixed combustion. In this model, the chemical time scales are considered to be smaller compared to those of the turbulence, which allows the heat and mass transfer equation to be decoupled from the flow equation. However, the model's dependency on the mixture fraction limits the combustion analysis to a single injection. To overcome this limitation, a two dimensional flamelet model, which uses two mixture fraction variables, was introduced to represent the non-premixed combustion of multiple injections. However, the model's computational time drastically increased due to the expansion of the solution domain. Thus, a modified 2-D flamelet model was introduced to reduce the computational time of the two dimensional flamelet model.
Technical Paper

Modeling of Combustion Process of Multiple Injection in HSDI Diesel Engines using Modified Two-Dimensional Flamelet

Ignition delay of the second injection of HSDI diesel engines is generally much shorter than that of the first injection because of the interaction between the radicals generated during the combustion process and the mixed gas of the second injection. Although previous Diesel combustion models could not explain this reaction, Hasse and Peters described the mass and heat transfer of the second injection and estimated the ignition delay of the second injection using two-dimensional flamelet equations. But a simulation of the two-dimensional flamelet equations requires enormous computational time. Thus, to analyze the combustion phenomena of the multiple injection mode in HSDI diesel engines effectively, the two-dimensional flamelet combustion model was modified in this study. To reduce the calculation time, two-dimensional flamelet equations were only applied near the stoichiometric region.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

Ignition Delay Model of Multiple Injections in CI Engines

In compression ignition engines, the combustion starts after the ignition delay period from the start of injection. The degree of mixing between air and fuel during this period impacts combustion characteristics, such as the pressure rise rate, which worsens combustion noise. The formation of soot and nitrogen oxides can also be affected. In addition, ignition delay is essential to estimate the in-cylinder pressure. Therefore, there have been many researches performed to estimate the ignition delay for model-based control applications considering the above relations. In this study, a semiempirical and 0-dimensional ignition delay model is developed for real-time control applications. As the ignition delay consists of physical and chemical delays in compression ignition engines, the integrated ignition delay model considers both of these variables.
Technical Paper

Hydraulic Simulation and Experimental Analysis of Needle Response and Controlled Injection Rate Shape Characteristics in a Piezo-driven Diesel Injector

The More precise control of the multiple-injection is required in common-rail injection system of direct injection diesel engine to meet the low NOx emission and optimal PM filter system. The main parameter for obtaining the multiple-injections is the mechanism controlling the injector needle energizing and movement. In this study, a piezo-driven diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code and to evaluate the effect of this control capability on spray formation processes. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results.
Technical Paper

Emission Reduction using a Close Post Injection Strategy with a Modified Nozzle and Piston Bowl Geometry for a Heavy EGR Rate

As EURO-6 regulations will be enforced in 2014, the reduction of NOx emission while maintaining low PM emission levels becomes an important topic in current diesel engine research. EGR is the most effective way to reduce the NOx emission because EGR has a dilution and thermal effect as a means to reduce the oxygen concentration and combustion temperature. Although EGR is useful in reducing the NOx emission, it suffers from a higher level of CO and THC emissions, which indicates a low combustion efficiency and poor fuel consumption. Therefore, in this research, a close post injection strategy, which is implemented using main injection and post injection, is introduced to improve combustion efficiency and to reduce PM emission under a high EGR rate. In addition, a modified hardware configuration using a double-row nozzle and a two-staged piston bowl geometry is adapted to improve the effect of the close post injection.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Closed-Loop Control for Diesel Combustion Noise Using Engine Vibration Signals

The combustion noise of a diesel engine can be deteriorated by combustion characteristics such as the maximum rate of heat release and the start of combustion. These combustion characteristics in turn are influenced by the factors such as the engine NVH durability, driving conditions, environmental factors and fuel properties. Therefore, we need to develop the robust combustion noise that is insensitive to these factors. To achieve this aim, methods for predicting combustion characteristics has been developed by analyzing the vibration signal measured from the engine cylinder block. The closed-loop control of injection parameters through combustion characteristics prediction has been performed to produce the desired engine combustion performance. We constructed an ECU logic for the closed-loop control and verified the design in a diesel passenger car. We also evaluated the effect of combustion noise and fuel consumption by applying the closed-loop control.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.