Refine Your Search

Topic

Search Results

Technical Paper

The Efficiency and Emission Characteristics of Dual Fuel Combustion Using Gasoline Direct Injection and Ethanol Port Injection in an SI Engine

2014-04-01
2014-01-1208
Ethanol, one of the most widely used biofuels, has the potential to increase the knock resistance of gasoline and decrease harmful emissions when blended with gasoline. However, due to the characteristics of ethanol, a trade-off relationship between knock tolerance and BSFC exists which is balanced by the blending ratio of gasoline and ethanol. Furthermore, in a spark-ignited engine, it is reported that the blending ratio that maximizes thermal efficiency varies based on the engine operating conditions. Therefore, an injection system that can deliver gasoline and ethanol separately is needed to fully exploit the benefit of ethanol. In this study, PFI injectors and a DI injector are used to deliver ethanol and gasoline, respectively. Using the dual fuel injection system, the compression ratio was increased from 9.5 to 13.3, and the knock mitigation characteristics at the full load condition were examined.
Technical Paper

The Effect of Ethanol Injection Strategy on Knock Suppression of the Gasoline/Ethanol Dual Fuel Combustion in a Spark-Ignited Engine

2015-04-14
2015-01-0764
Ethanol is becoming more popular as a fuel component for spark-ignited engines. Ethanol can be used either as an octane enhancer of low RON gasoline or splash-blended with gasoline if a single injector is used for fuel injection. If two separate injectors are used, it is possible to inject gasoline and ethanol separately and the addition of ethanol can be varied on demand. In this study, the effect of the ethanol injection strategy on knock suppression was observed using a single cylinder engine equipped with two port fuel injectors dedicated to each side of the intake port and one direct injector. If the fuel is injected to only one side of the intake port, it is possible to form a stratified charge. The experiment was conducted under a compression ratio of 12.2 for various injection strategies.
Technical Paper

Study on the Application of the Waste Heat Recovery System to Heavy-Duty Series Hybrid Electric Vehicles

2013-04-08
2013-01-1455
A waste heat recovery system is applied to a heavy-duty series hybrid electric vehicle. The engine in a series hybrid electric vehicle can operate at steady state for most of the time because the engine and drivetrain are decoupled, providing the waste heat recovery system with a steady state heat source. Thus, it is possible to optimize the waste heat recovery system design while maximizing the amount of useful energy converted in the system. To realize such a waste heat recovery system, the Rankine steam cycle is selected for the bottoming cycle. The heat exchanger is implemented as a quasi-1D simulation model to calculate the accurate quantity of recovered energy and to determine the working fluid state. The optimal geometric characteristics of the heat exchanger and the efficiency are considered according to the working fluid. The Rankine steam cycle model is constructed, and the output power is calculated.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
Journal Article

Spray and Combustion Characteristics of Ethanol Blended Gasoline in a Spray Guided DISI Engine under Lean Stratified Operation

2010-10-25
2010-01-2152
An experimental study was performed to evaluate the effects of ethanol blending on to gasoline spray and combustion characteristics in a spray-guided direct-injection spark-ignition engine under lean stratified operation. The spray characteristics, including local homogeneity and phase distribution, were investigated by the planar laser-induced fluorescence and the planar Mie scattering method in a constant volume chamber. Therefore, the single cylinder engine was operated with pure gasoline, 85 %vol, 50 %vol and 25vol % ethanol blended with gasoline (E85, E50, E25) to investigate the combustion and exhaust emission characteristics. Ethanol was identified to have the potential of generating a more appropriate spray for internal combustion due to a higher vapor pressure at high temperature conditions. The planar laser-induced fluorescence image demonstrated that ethanol spray has a faster diffusion velocity and an enhanced local homogeneity.
Technical Paper

Reduced Chemical Kinetic Model of DME for HCCI Combustion

2003-05-19
2003-01-1822
Homogeneous Charge Compression Ignition combustion engines could have a thermal efficiency as high as that of conventional compression-ignition engines and the production of low emissions of ultra-low oxides of NOx and PM. HCCI engines can operate on most alternative fuels, especially, dimethyl ether which has been tested as possible diesel fuel for its simultaneously reduced NOx and PM emissions. However, to adjust HCCI combustion to practical engines, the main problem about the HCCI engine must be solved; control of its ignition timing and burn rate over a range of engine speeds and loads. Detailed chemical kinetic modeling has been used to predict the combustion characteristics. But it is difficult to apply detailed chemical kinetic mechanism to simulate practical engines because of its high complexity coupled with multidimensional fluid dynamic models. Thus, reduced chemical kinetic modeling is desirable.
Technical Paper

Numerical Study on Wall Impingement and Film Formation in Direct-Injection Spark-Ignition Condition

2020-04-14
2020-01-1160
Since the amount of emitted CO2 is directly related to car fuel economy, attention is being drawn to DISI (Direct-Injection Spark-Ignition) engines, which have better fuel economy than conventional gasoline engines. However, it has been a problem that the rich air-fuel mixtures associated with fuel films during cold starts due to spray impingement produce particulate matter (PM). In predicting soot formation, it is important to predict the mixture field precisely. Thus, accurate spray and film models are a prerequisite of the soot model. The previous models were well matched with low-speed collision conditions, such as those of diesel engines, which have a relatively high ambient pressure and long traveling distances. Droplets colliding at low velocities have an order of magnitude of kinetic energy similar to that of the sum of the surface tension energy and the critical energy at which the splash occurs.
Technical Paper

Numerical Analysis of Pollutant Formation in Direct-Injection Spark-Ignition Engines by Incorporating the G-Equation with a Flamelet Library

2014-04-01
2014-01-1145
Direct-injection spark-ignition (DISI) engines are regarded as a promising technology for the reduction of fuel consumption and improvement of engine thermal efficiency. However, due to direct injection, the shortened fuel-air mixing duration leads to a spatial gradient of the equivalence ratio, and these locally rich regions cause the formation of particulate matter. In the current study, numerical investigations on pollutant formation in a DISI engine were performed using combined flamelet models for premixed and diffusion flames. The G-equation model for partially premixed combustion was improved by incorporating the laminar flamelet library. Gasoline fuel was represented as a ternary mixture of gasoline surrogate and its laminar flame speeds were obtained under a wide range of engine operating conditions.
Technical Paper

New Index for Diagnosis of Abnormal Combustion Using a Crankshaft Position Sensor in a Diesel Engine

2019-04-02
2019-01-0720
Most research of internal combustion engine focuses on improving the fuel economy and reducing exhaust emissions to satisfy regulations and marketability. Engine combustion is a key factor in determining engine performance. Generally, engine operating parameters are optimized for the best performance and less exhaust emissions. However, abnormal combustion results in engine conditions that are far from an optimized operation. Abnormal combustion, including a misfire, can happen for a variety of reasons, such as superannuated vehicles, extreme changes in the driving environment, etc. Abnormal combustion causes serious deterioration of not only noise, vibration and harshness (NVH), but also the fuel economy and exhaust emission. NVH stands for unwanted noise, vibration and harshness from the vehicle. The misfiring especially deteriorates vehicle comfortability. Abnormal combustion at one cylinder breaks the exciting force balance between cylinders and causes unexpected vibration.
Technical Paper

Laminar Flame Speed Characteristics and Combustion Simulation of Synthetic Gas Fueled SI Engine

2008-04-14
2008-01-0965
As the real-time supplying of hydrogen-rich gas becomes possible by the advances in the on-board fuel reforming technologies, utilizations of synthetic gas in IC engines are actively studied. However, due to the lack of fundamental studies on the combustion characteristics of synthetic gas, there is no precedent for the simulation of combustion process in synthetic gas fueled SI engine. In this study, the laminar flame speeds of synthetic gas and its mixture with iso-octane were calculated under extensive initial conditions of 3,575 points derived by combinations of temperature, pressure, fraction of lower heating value of synthetic gas and air-excess ratio variations.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

Improvement of Knock Onset Determination Based on Supervised Deep Learning Using Data Filtering

2021-04-06
2021-01-0383
Regulations regarding vehicles’ CO2 emissions are continuing to become stricter due to global warming. The CO2 regulations urge automobile manufacturers to develop gasoline engines with improved efficiency; however, the main obstacle to the improvement is the knock phenomenon in spark-ignition engines. If knock is predicted, the efficiency potential can be maximized in an engine by applying modest spark timing. Several research regarding knock prediction modeling have been conducted, and typically Livengood-Wu integral model is used to predict the knock occurrence. For the prediction, knock onset should be determined on a given pressure signal of given knock cycles for establishing the 0D ignition delay model. Several methodologies for knock onset determination have been developed because checking all the knock onset position by hand is impossible considering the breadth of data sets.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Journal Article

Fuel Economy Research on Series-Type HEV Intracity Buses with Different Traction Motor Capacity Combinations

2012-04-16
2012-01-1035
Research on HEV (hybrid electric vehicle) intracity buses has become a topic of interest because the well-known service routes of intracity buses and the frequent stop/go pattern make the energy management of the vehicle straightforward. Thus, the energy flow and the energy management of the intracity bus have been studied extensively in order to improve fuel economy. However, the HEV buses that have been studied previously were equipped with a single traction motor or with dual motors with the same capacity for the convenience of the equipment without considering the motoring or generating efficiency of the traction motor. Therefore, the energy flow from the engine/generator unit to the traction motor that has been optimized by many kinds of energy distribution strategies could not be transferred to the wheels in the most efficient manner. This paper investigates this aspect of the energy flow.
Technical Paper

Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles

2002-03-04
2002-01-0449
An LPG engine for heavy duty vehicles has been developed using liquid phase LPG injection (hereafter LPLI) system, which has regarded as as one of next generation LPG fuel supply systems. In this work the optimized piston cavities were investigated and chosen for an LPLI engine system. While the mass production of piston cavities is considered, three piston cavities were tested: Dog-dish type, bathtub type and top-land-cut bathtub type. From the experiments the bathtub type showed the extension of lean limit while achieving the stable combustion, compared to the dog-dish type at the same injection timing. Throughout CFD analysis, it was revealed that the extension of lean limit was due to an increase of turbulence intensity by the enlarged crevice area, and the enlargement of flame front surface owing to the shape of the bathtub piston cavity compared to that of the dog-dish type.
Technical Paper

Emission Reduction using a Close Post Injection Strategy with a Modified Nozzle and Piston Bowl Geometry for a Heavy EGR Rate

2012-04-16
2012-01-0681
As EURO-6 regulations will be enforced in 2014, the reduction of NOx emission while maintaining low PM emission levels becomes an important topic in current diesel engine research. EGR is the most effective way to reduce the NOx emission because EGR has a dilution and thermal effect as a means to reduce the oxygen concentration and combustion temperature. Although EGR is useful in reducing the NOx emission, it suffers from a higher level of CO and THC emissions, which indicates a low combustion efficiency and poor fuel consumption. Therefore, in this research, a close post injection strategy, which is implemented using main injection and post injection, is introduced to improve combustion efficiency and to reduce PM emission under a high EGR rate. In addition, a modified hardware configuration using a double-row nozzle and a two-staged piston bowl geometry is adapted to improve the effect of the close post injection.
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
Technical Paper

Development of a Vehicle System Model for the First Medium- and Heavy-Duty Commercial Vehicle Fuel Efficiency Standards in Korea

2015-09-29
2015-01-2774
To properly respond to demands to reduce national energy consumption and meet greenhouse gas emission targets based on environment policy, the Ministry of Trade, Industry, and Energy of Korea formed a research consortium consisting of government agencies and academic and research institutions to establish the first fuel efficiency standards for medium- and heavy-duty (MHD) commercial vehicles. The standards are expected to be introduced in 2017 as Phase 1 of the plan and will regulate trucks with a gross vehicle weight in excess of 3.5 tons and buses with a carrying capacity of more than 16 persons. Most MHD commercial vehicles are custom-made and manufactured in diversified small-quantity batch production systems for commercial or public use, resulting in difficulties in utilizing mandatory vehicle tests for fuel efficiency evaluations.
Technical Paper

Closed-Loop Control for Diesel Combustion Noise Using Engine Vibration Signals

2015-06-15
2015-01-2297
The combustion noise of a diesel engine can be deteriorated by combustion characteristics such as the maximum rate of heat release and the start of combustion. These combustion characteristics in turn are influenced by the factors such as the engine NVH durability, driving conditions, environmental factors and fuel properties. Therefore, we need to develop the robust combustion noise that is insensitive to these factors. To achieve this aim, methods for predicting combustion characteristics has been developed by analyzing the vibration signal measured from the engine cylinder block. The closed-loop control of injection parameters through combustion characteristics prediction has been performed to produce the desired engine combustion performance. We constructed an ECU logic for the closed-loop control and verified the design in a diesel passenger car. We also evaluated the effect of combustion noise and fuel consumption by applying the closed-loop control.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

2016-06-15
2016-01-1770
This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.
X