Refine Your Search

Topic

Search Results

Technical Paper

Tracking Panel Movement during Stamping Process Using Advanced Optical Technology

2020-04-14
2020-01-0541
Metal panels are comprehensively applied in the automotive industry. A significant issue with metal panels is the deflection when moving in the press line of the stamping process. Unpredictable deflection could result in the cut off of the press line. To control the deflection in a safe zone, finite element tools are used to simulate the panel transform process. However, the simulation requires experimental validation where conventional displacement measurement techniques could not satisfy the requirement of vast filed displacement and accuracy point tracking. In this study, multi-camera digital image correlation (DIC) systems have been developed to track the movement of panels during the press line of the stamping process. There are some advantages of applying the DIC system, including non-contact, full-field, high accuracy, and direct measurement techniques that provide the evaluation displacement of the metal panel and press line.
Technical Paper

The Study of the Effective Contact Area of Suction Cup

2021-04-06
2021-01-0298
As the industry moves further into the automotive age, the failure of the cup during the transportation of the parts during the assembly process is costly. Among them, the effective contact area of the suction cup could influence the significant availability of the pressure, which is necessary to investigate the truth. The essential objective for this research is trying to improve the effectiveness of the suction cups during gripers work in company’s industry. In this research, the real work condition is simulated by the experimental setup to find the influence of the effective contact area. In this paper, the proper methodology to measure the effective area by testing different size cups under different conditions is described. The results are verified by the digital image correlation (DIC) technique.
Technical Paper

The Research on Edge Tearing with Digital Image Correlation

2015-04-14
2015-01-0593
Material formability is a very important aspect in the automotive stamping, which must be tested for the success of manufacturing. One of the most important sheet metal formability parameters for the stamping is the edge tear-ability. In this paper, a novel test method has been present to test the aluminum sheet edge tear-ability with 3D digital image correlation (DIC) system. The newly developed test specimen and fixture design are also presented. In order to capture the edge deformation and strain, sample's edge surface has been sprayed with artificial speckle. A standard MTS tensile machine was used to record the tearing load and displacement. Through the data processing and evaluation of sequence image, testing results are found valid and reliable. The results show that the 3D DIC system with double CCD can effectively carry out sheet edge tear deformation. The edge tearing test method is found to be a simple, reliable, high precision, and able to provide useful results.
Technical Paper

The Research Progress of Dynamic Photo-Elastic Method

2014-04-01
2014-01-0829
With the rapid development of computing technology, high-speed photography system and image processing recently, in order to meet growing dynamic mechanical engineering problems demand, a brief description of advances in recent research which solved some key problems of dynamic photo-elastic method will be given, including:(1) New digital dynamic photo-elastic instrument was developed. Multi-spark discharge light source was replaced by laser light source which was a high intensity light source continuous and real-time. Multiple cameras shooting system was replaced by high-speed photography system. The whole system device was controlled by software. The image optimization collection was realized and a strong guarantee was provided for digital image processing. (2)The static and dynamic photo-elastic materials were explored. The new formula and process of the dynamic photo-elastic model materials will be introduced. The silicon rubber mold was used without the release agent.
Technical Paper

The Influence of Edge Quality on Edge Stretching Limit for Aluminum Alloy

2016-04-05
2016-01-0416
This paper presents the measurement and analysis of the edge stretching limit of aluminum alloy using digital image correlation. The edge stretching limit, also known as the “edge thinning limit,” is the maximum thinning strain at a point of edge failure resulting from tension; which may be predisposed by edge quality. Edge fracture is a vital failure mode in sheet metal forming, however it is very difficult to measure. A previous study enabled the measurement of edge thinning strain by using advanced digital image correlation but it did not consider how the edge quality could affect the edge stretching limit of aluminum alloy. This paper continues to measure edge thinning strain by comparing polished to unpolished AA5754, thus determining the effect edge quality has on the edge stretching limit. To enable the measurement by optical method for a very long and thin sample, a notch is used to localize where edge failure occurs.
Technical Paper

The Digital Image Correlation Technique Applied to Hole Drilling Residual Stress Measurement

2014-04-01
2014-01-0825
The residual stresses found in components are mainly due to thermal, mechanical and metallurgical changes of material. The manufacturing processes such as fabrication, assembly, welding, rolling, heat treatment, shot peening etc. generate residual stresses in material. The influence of residual stress can be beneficial or detrimental depending on nature and distribution of the residual stress in material. In general, the compressive residual stress can increase the fatigue life of material because it provides greater resistance for crack initiation and propagation. A significant number of improvements for residual stress measurement techniques have occurred in last few decades. The most popular technique of residual stress measurement is based on the principle of strain gage rosette and hole drilling (ASTM E837-01, destructive).
Technical Paper

The Application of 3-D Electronic Speckle Pattern Interferometry in Assembly Process of Bolted Joints

2005-04-11
2005-01-0896
In this paper, an optical method for inspecting the bolt tension is presented. This method uses 3-D Electronic Speckle Pattern Interferometry (ESPI) technique to measure and monitor the deformation field on the surface of the clamped member, and to establish a reliable correlation with the bolt tension. A new torque-deformation tension control concept is presented on the basis of this deformation - bolt tension relationship. Because the relationship between the bolt tension and deformation is independent of the frictional variables of the bolt, the inspection and control accuracy by this optical method is more reliable than relying on the torque-tension relationship. This experimental study is completed on a bolted joint. The relationship between the in-plane deformation on a clamped pin and the bolt tension is established. The method for eliminating the effect of the rotation on the deformation measurement is provided.
Journal Article

Suction Cup Quality Predication by Digital Image Correlation

2023-04-11
2023-01-0067
Vacuum suction cups are used as transforming handles in stamping lines, which are essential in developing automation and mechanization. However, the vacuum suction cup will crack due to fatigue or long-term operation or installation angle, which directly affects production productivity and safety. The better design will help increase the cups' service life. If the location of stress concentration can be predicted, this can prevent the occurrence of cracks in advance and effectively increase the service life. However, the traditional strain measurement technology cannot meet the requirements of tracking large-field stains and precise point tracking simultaneously in the same area, especially for stacking or narrow parts of the suction cups. The application must allow multiple measurements of hidden component strain information in different fields of view, which would add cost.
Technical Paper

Study on Frictional Behavior of AA 6XXX with Three Lube Conditions in Sheet Metal Forming

2018-04-03
2018-01-0810
Light-weighting vehicles cause an increase in Aluminum Alloy stamping processes in the Automotive Industry. Surface finish and lubricants of aluminum alloy (AA) sheet play an important role in the deep drawing processes as they can affect the friction condition between the die and the sheet. This paper aims to develop a reliable and practical laboratory test method to experimentally investigate the influence of surface finish, lubricant conditions, draw-bead clearances and pulling speed on the frictional sliding behavior of AA 6XXX sheet metal. A new double-beads draw-bead-simulator (DBS) system was used to conduct the simulated test to determine the frictional behavior of an aluminium alloy with three surface lubricant conditions: mill finish (MF) with oil lube, electric discharge texture (EDT) finish with oil lube and mill finish (MF) with dry lube (DL).
Technical Paper

Study of Incremental Bending Test on Aluminum Sheets

2018-04-03
2018-01-0807
Bendability is one of the most important formability characteristics in sheet metal forming, so it has to be understood for robust aluminum stamping process designs. Crack is one of the major failure modes in aluminum sheet bending. In this study, a new “incremental bending” method is proposed to reduce the risk of bending failure. A novel laboratory test methodology is conducted to test the 5xxx series aluminum sheet bendability with 3D digital image correlation (DIC) measurement system. The designs of test apparatus and test procedure are introduced in this paper. Through the data processing and evaluation of a sequence image acquisition, the major strain histories within the zone of the through thickness crack of test samples are measured. Testing results show that incremental bending is capable of reducing peak strain on the outer surface obviously compared with traditional non-incremental bending. The more step, more movement, the more peak strain reduction.
Journal Article

Scanning Frequency Ranges of Harmonic Response for a Spot-Welded Copper-Aluminum Plate Using Finite Element Method

2011-04-12
2011-01-1076
In this paper, a finite element methodology is given in which finite element models of a three-weld Al-Cu plate is created with support and loading conditions emulating those seen in an optical lab. Harmonic response is sought for the models under the presumption that various defective welds are present. The numerical results are carefully examined to determine the guideline frequency range so the actual optical experiment can be carried out more efficiently.
Technical Paper

Research on the different Behavior of Edge Cracking Limit by Adopting the Laser Cutting Method

2019-04-02
2019-01-1264
The edge fracture occurs more frequently during the forming procedure by using the material with higher strength. To avoid the edge fracture that happens during the manufacturing, the edge cracking limit at different pre-strain level needs to be determined. The edge of the part under forming is conventionally manufactured by mechanical cutting, and the edge cracking limit under this circumstance is already heavily studied. In recent years, laser cutting is more applied in the automotive industry to cutting the edge due to the following advantages over mechanical cutting: easier work holding, higher precision, no wearing, smaller heat-affected zone, etc. The change cutting method could lead to a different behavior to the edge cracking limit at different pre-strain level. In this paper, the edge cracking limits of sets of pre-strained coupons with different pre-strain levels are tested. Half of them is cut by the conventional punch method, and the other half uses laser cutting.
Technical Paper

Research on Shear Test of New Style Automotive Structural Adhesive

2014-04-01
2014-01-0828
In this paper, Digital Image Correlation Method (DICM) is employed to measure the shear mechanical property of the new style automotive structural adhesive specimens and traditional spot welded specimens under quasi static uniaxial shear tensile test. This experiment adopts a non-contact measuring method to measure the strain of specimens. A CCD and a computer image processing system are used to capture and record the real-time surface images of the specimens before and after deformation. Digital correlation software is used to process the imagines before and after deformation to obtain the specimen's strain of the moment. And then both the force-displacement curve and the stress-strain curve during the tensile process could be obtained. The test and analysis results show that the new style structural adhesive specimens have a great advantage with the spot welded specimens. It provides experimental evidence for further improvement of this structural adhesive.
Journal Article

Quality Inspection of Spot Welds using Digital Shearography

2012-04-16
2012-01-0182
Spot Welding is an important welding technique which is widely used in automotive and aerospace industry. One of the keys of checking the quality of the welds is measuring the size of the nugget. In this paper, the Shearographic technique is utilized to test weld joint samples under the thermal loading condition. The goal is to identify the different group of the nuggets (i.e. small, middle, and large sizes, which indicate the quality of spot welds). In the experiments, the sample under test is fixed by a magnet method from behind at the four edges. Thermal loading was applied in the back side and the sample is inspected using the digital Shearographic system in the front side. Results show the great possibility of classifying the nugget size into three groups and the measurement is well repeatable.
Technical Paper

Property and Fiber Orientation Determination for Carbon Fiber Composite

2018-04-03
2018-01-1216
Unexpected severe failures occur during the warm forming procedure of carbon fiber material due to the existence of extremely large deformation/strain. To evaluate this failure, a good understanding the accurate material property under certain loading is important to evaluate the forming feasibility of carbon fiber material. Also, a clear connection between the fiber orientation and the material property helps to increase the accuracy of the forming prediction. Therefore, an experimental test is needed to evaluate the material property as well as the fiber orientation. In this paper, a uniaxial tension test for the prepreg carbon fiber under the warm forming condition is performed. A halogen lamp is used to heat the specimen to reach the warm forming condition. A 3D Digital Image Correlation (3D-DIC) is utilized to measure the material property and the fiber orientation in this test, along with a DIP system.
Technical Paper

Non-Destructive Evaluation of Spot Weld Using Digital Shearography

2005-04-11
2005-01-0491
Spot Welding is now widely used in the fabrication of sheet metals, mainly due to the cost and time considerations. Spot welds are found in nearly all products where sheet metal is joined. Examples range from a single metal toolbox to nearly 10,000 spot welds found in a typical passenger car. Obviously the quality of the spot weld has a direct impact on the quality of the product. The problem of estimating the spot-weld quality is an important component in quality control. If the weld nuggets are improperly or incompletely formed, or the area surrounding the nugget is smaller than required, the structural integrity of the entire part may be uncertain. Furthermore these inconsistencies are usually internal and are seldom visible to Optical Inspection. This study is focused on the non-destructive evaluation of the spot welds using “Digital Shearography”.
Technical Paper

NDT of Weld Joints Using Shearographic Interferometry and Dynamic Exciation

2011-04-12
2011-01-0996
Weld Joints are widely used in automotive and aerospace industry. The main issue in the weld joints is the quality inspection to detect the disconnection in the welded area. In this paper, Shearographic technique with dynamic excitation is introduced to test the weld joints. In the experiments, the coupons are of 4 very thin layers of metal sheets welded together. The goal is to find out if there are any disconnections between the layers. They are clamped and then excited by a PZT actuator from behind. A real time digital Shearographic system with a self-refreshed reference image technology has been developed to display the measuring result, i.e. shearogram. A big range of driving frequencies is scanned to find the proper frequency and amplitude that can help to identify the disconnections. The results show that when the driving frequency reaches the resonance frequency, there will be big amplitude and thus a fringe pattern becomes visible on the coupon surface.
Technical Paper

Measurement and Evaluation of Vacuum Suction Cups Using Digital Image Correlation

2020-04-14
2020-01-0542
As vacuum suction cups are widely used in stamping plants, it becomes urgent and important to understand their performance and failure mode. Vacuum suction cups are employed to lift, move, and place sheet metal instead of human hands. Occasionally the vacuum cups would fail and drop parts, even it would cause expensive delays in the production line. In this research, several types of vacuum cups have been studies and compared experimentally. A new tensile device and test method was developed to measure the pulling force and deformation of vacuum cups. The digital image correlation technique has been adopted to capture and analyze the contour, deformation and strain of the cups under different working conditions. The experimental results revealed that the relevant influential parameters include cup type, pulling force angles, vacuum levels, sheet metal curvatures, etc.
Technical Paper

Measure of Forming Limit Strain on the Aluminum Sheets Passed Through Draw-Bead by Digital Image Correlation

2015-04-14
2015-01-0598
Accurate determination of the forming limit strain of aluminum sheet metal is an important topic which has not been fully solved by industry. Also, the effects of draw beads (enhanced forming limit behaviors), normally reported on steel sheet metals, on aluminum sheet metal is not fully understood. This paper introduces an experimental study on draw bead effects on aluminum sheet metals by measuring the forming limit strain zero (FLD0) of the sheet metal. Two kinds of aluminum, AL 6016-T4 and AL 5754-0, are used. Virgin material, 40% draw bead material and 60% draw bead material conditions are tested for each kind of aluminum. Marciniak punch tests were performed to create a plane strain condition. A dual camera Digital Image Correlation (DIC) system was used to record and measure the deformation distribution history during the punch test. The on-set necking timing is determined directly from surface shape change. The FLD0 of each test situation is reported in this article.
Technical Paper

Friction Coefficient Evaluation on Aluminum Alloy Sheet Metal Using Digital Image Correlation

2018-04-03
2018-01-1223
The coefficient of friction between surfaces is an important criterion for predicting metal behavior during sheet metal stamping processes. This research introduces an innovative technique to find the coefficient of friction on a lubricated aluminum sheet metal surface by simulating the industrial manufacturing stamping process while using 3D digital image correlation (3D-DIC) to track the deformation. During testing, a 5000 series aluminum specimen is placed inside a Stretch-Bend-Draw Simulator (SBDS), which operates with a tensile machine to create a stretch and bend effect. The friction coefficient at the contact point between an alloy sheet metal and a punch tool is calculated using an empirical equation previously developed. In order to solve for the unknown friction coefficient, the load force and the drawback force are both required. The tensile machine software only provides the load force applied on the specimen by the load cell.
X