Refine Your Search

Topic

Search Results

Technical Paper

Wing-Diffuser Interaction on a Sports Car

2011-04-12
2011-01-1433
Amongst the aerodynamic devices often found on race cars, the diffuser is one of the most important items. The diffuser can work both to reduce drag and also to increase downforce. It has been shown in previously published studies, that the efficiency of the diffuser is a function of the diffuser angle, ground clearance and most importantly, the base pressure. The base pressure of a car is defined by the shape of the car and in particular the shape at the rear end, including the rear wheels. Furthermore, on most race cars, a wing is mounted at the rear end. Since the rear wheels and wing will influence the base pressure it is believed that, for a modern race car, there could be a strong interaction between these items and the diffuser. This work aims to systematically study the interaction between the rear wheels and wing; and the diffuser of a contemporary, sports car type, race vehicle.
Technical Paper

Wake and Unsteady Surface-Pressure Measurements on an SUV with Rear-End Extensions

2015-04-14
2015-01-1545
Previous research on both small-scale and full-scale vehicles shows that base extensions are an effective method to increase the base pressure, enhancing pressure recovery and reducing the wake size. These extensions decrease drag at zero yaw, but show an even larger improvement at small yaw angles. In this paper, rear extensions are investigated on an SUV in the Volvo Cars Aerodynamic Wind Tunnel with focus on the wake flow and on the unsteady behavior of the surface pressures near the base perimeter. To increase the effect of the extensions on the wake flow, the investigated configurations have a closed upper- and lower grille (closed-cooling) and the underbody has been smoothed with additional panels. This paper aims to analyze differences in flow characteristics on the wake of an SUV at 0° and 2.5° yaw, caused by different sets of extensions attached to the base perimeter. Extensions with several lengths are investigated with and without a kick.
Technical Paper

The Role of Aerodynamics in the 1955 Le Mans Crash

2008-12-02
2008-01-2996
In the 1955 Le Mans race the worst crash in motor racing history occurred and this accident would change the face of motor racing for decades. After the crash numerous investigations on the disaster were performed, and fifty years after some interesting books were launched on the subject. However, a number of key questions remain unsolved; and one open area is the influence of aerodynamics on the scenario, since the Mercedes-Benz 300 SLR involved in the crash was equipped with an air-brake and its influence on the accident is basically unknown. This work may be considered as a first attempt to establish CFD as a tool to aid in resolving aerodynamic aspects in motor sport accidents and in the present paper, CFD has been used to investigate the aerodynamics and estimate the drag and lift coefficients of the Mercedes-Benz 300 SLR used in the Le Mans race of 1955.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Journal Article

Performance of an Automotive Under-Body Diffuser Applied to a Sedan and a Wagon Vehicle

2013-04-08
2013-01-0952
Reducing resistance forces all over the vehicle is the most sustainable way to reduce fuel consumption. Aerodynamic drag is the dominating resistance force at highway speeds, and the power required to overcome this force increases by the power three of speed. The exterior body and especially the under-body and rear-end geometry of a passenger car are significant contributors to the overall aerodynamic drag. To reduce the aerodynamic drag it is of great importance to have a good pressure recovery at the rear. Since pressure drag is the dominating aerodynamic drag force for a passenger vehicle, the drag force will be a measure of the difference between the pressure in front and at the rear. There is high stagnation pressure at the front which requires a base pressure as high as possible. The pressure will recover from the sides by a taper angle, from the top by the rear wind screen, and from the bottom, by a diffuser.
Technical Paper

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-04-05
2016-01-1606
The aerodynamic drag, fuel consumption and hence CO2 emissions, of a road vehicle depend strongly on its flow structures and the pressure drag generated. The rear end flow which is an area of complex three-dimensional flow structures, contributes to the wake development and the overall aerodynamic performance of the vehicle. This paper seeks to provide improved insight into this flow region to better inform future drag reduction strategies. Using experimental and numerical techniques, two vehicle shapes have been studied; a 30% scale model of a Volvo S60 representing a 2003MY vehicle and a full scale 2010MY S60. First the surface topology of the rear end (rear window and trunk deck) of both configurations is analysed, using paint to visualise the skin friction pattern. By means of critical points, the pattern is characterized and changes are identified studying the location and type of the occurring singularities.
Journal Article

Investigation of Wheel Ventilation-Drag using a Modular Wheel Design Concept

2013-04-08
2013-01-0953
Passenger car fuel consumption is a constant concern for automotive companies and the contribution to fuel consumption from aerodynamics is well known. Several studies have been published on the aerodynamics of wheels. One area of wheel aerodynamics discussed in some of these earlier works is the so-called ventilation resistance. This study investigates ventilation resistance on a number of 17 inch rims, in the Volvo Cars Aerodynamic Wind Tunnel. The ventilation resistance was measured using a custom-built suspension with a tractive force measurement system installed in the Wheel Drive Units (WDUs). The study aims at identifying wheel design factors that have significant effect on the ventilation resistance for the investigated wheel size. The results show that it was possible to measure similar power requirements to rotate the wheels as was found in previous works.
Journal Article

Investigation of Wheel Aerodynamic Resistance of Passenger Cars

2014-04-01
2014-01-0606
There are a number of numerical and experimental studies of the aerodynamic performance of wheels that have been published. They show that wheels and wheel-housing flows are responsible for a substantial part of the total aerodynamic drag on passenger vehicles. Previous investigations have also shown that aerodynamic resistance moment acting on rotating wheels, sometimes referred to as ventilation resistance or ventilation torque is a significant contributor to the total aerodynamic resistance of the vehicle; therefore it should not be neglected when designing the wheel-housing area. This work presents a numerical study of the wheel ventilation resistance moment and factors that affect it, using computational fluid dynamics (CFD). It is demonstrated how pressure and shear forces acting on different rotating parts of the wheel affect the ventilation torque. It is also shown how a simple change of rim design can lead to a significant decrease in power consumption of the vehicle.
Technical Paper

Interference between Engine Bay Flow and External Aerodynamics of Road Vehicles

2010-04-12
2010-01-0288
This study focus on the aerodynamic influence of the engine bay packaging, with special emphasis on the density of packaging and its effect on cooling and exterior flow. For the study, numerical and experimental methods where combined to exploit the advantages of each method. The geometry used for the study was a model of Volvo S60 sedan type passenger car, carrying a detailed representation of the cooling package, engine bay and underbody area. In the study it was found that there is an influence on the exterior aerodynamics of the vehicle with respect to the packaging of the engine bay. Furthermore, it is shown that by evacuating a large amount of the cooling air through the wheel houses a reduction in drag can be achieved.
Technical Paper

Influences of Different Front and Rear Wheel Designs on Aerodynamic Drag of a Sedan Type Passenger Car

2011-04-12
2011-01-0165
Efforts towards ever more energy efficient passenger cars have become one of the largest challenges of the automotive industry. This involves numerous different fields of engineering, and every finished model is always a compromise between different requirements. Passenger car aerodynamics is no exception; the shape of the exterior is often dictated by styling, engine bay region by packaging issues etcetera. Wheel design is also a compromise between different requirements such as aerodynamic drag and brake cooling, but as the wheels and wheel housings are responsible for up to a quarter of the overall aerodynamic drag on a modern passenger car, it is not surprising that efforts are put towards improving the wheel aerodynamics.
Technical Paper

Heavy Vehicle Wheel Housing Flows - a Parametric Study

2009-04-20
2009-01-1169
The drag from the underbody, including wheels and wheel housing, constitutes a significant amount of the total aerodynamic drag of heavy vehicles. A correct simulation of the underbody boundary conditions, including rotating wheels and moving ground, has turned out to be of great importance in the minimising of the aerodynamic drag. In the current study several front wheel housing design parameters have been evaluated using Computational Fluid Dynamics (CFD). Design concepts, like enclosed inner wheel housings, underbody panel and wheel housing ventilation, were evaluated by flow analysis and comparison of the drag force contribution. It was shown that changes to the wheel housing geometry had an important impact on the local flow field and force distribution. The total drag of the vehicle decreased with reduced wheel housing volume and wheel housing ventilation can reduce the aerodynamic drag significantly provided it is designed properly.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Journal Article

Experimental and Numerical Investigation of Wheel Housing Aerodynamics on Heavy Trucks

2012-04-16
2012-01-0106
Wheel and underbody aerodynamics have become important topics in the search to reduce the aerodynamic drag of the heavy trucks. This study aims to investigate, experimentally as well as numerically, the local flow field around the wheels and in the wheel housing on a heavy truck; and how different approaches to modelling the wheel rotation in CFD influences the results. Emphasis is on effects due to ground simulation, and both moving ground and wheel rotation were requirements for this study. A 1:4-scale model of part of a heavy truck geometry has been developed. During the model design numerical simulations were used to optimise the shape, in order to replicate the flow field near the wheel of a complete truck. This was done by changing the flow angles of the incoming and exiting flows, and by keeping the mass flow rates in to, and out of, the wheel housing at the same ratios as in a reference full size vehicle.
Technical Paper

Effects of Ground Simulation on the Aerodynamic Coefficients of a Production Car in Yaw Conditions

2010-04-12
2010-01-0755
Automotive wind tunnel testing is a key element in the development of the aerodynamics of road vehicles. Continuous advancements are made in order to decrease the differences between actual on-road conditions and wind tunnel test properties and the importance of ground simulation with relative motion of the ground and rotating wheels has been the topic of several studies. This work presents a study on the effect of active ground simulation, using moving ground and rotating wheels, on the aerodynamic coefficients on a passenger car in yawed conditions. Most of the published studies on the effects of ground simulation cover only zero yaw conditions and only a few earlier investigations covering ground simulation during yaw were found in the existing literature and all considered simplified models. To further investigate this, a study on a full size sedan type vehicle of production status was performed in the Volvo Aerodynamic Wind Tunnel.
Technical Paper

Effect of Rear-End Extensions on the Aerodynamic Forces of an SUV

2014-04-01
2014-01-0602
Under a global impulse for less man-made emissions, the automotive manufacturers search for innovative methods to reduce the fuel consumption and hence the CO2-emissions. Aerodynamics has great potential to aid the emission reduction since aerodynamic drag is an important parameter in the overall driving resistance force. As vehicles are considered bluff bodies, the main drag source is pressure drag, caused by the difference between front and rear pressure. Therefore increasing the base pressure is a key parameter to reduce the aerodynamic drag. From previous research on small-scale and full-scale vehicles, rear-end extensions are known to have a positive effect on the base pressure, enhancing pressure recovery and reducing the wake area. This paper investigates the effect of several parameters of these extensions on the forces, on the surface pressures of an SUV in the Volvo Cars Aerodynamic Wind Tunnel and compares them with numerical results.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Cooling Performance Investigation of a Rear Mounted Cooling Package for Heavy Vehicles

2011-04-12
2011-01-0174
The aim of the study was to investigate the cooling performance of two cooling package positions for distribution vehicles by using Computational Fluid Dynamics. The first cooling package was positioned in the front of the vehicle, behind the grill and the second position was at the rear of the vehicle. Each case was evaluated by its cooling performance for a critical driving situation and its aerodynamic drag at 90 km/h, where the largest challenge of an alternative position is the cooling air availability. The geometry used was a semi-generic commercial vehicle, based on a medium size distribution truck with a heat rejection value set to a fixed typical level at maximum power for a 13 litre Euro 6 diesel engine. The heat exchangers included in the study were the air conditioning condenser, the charge air cooler and the radiator. It was found that the main problem with the rear mounted cooling installation was the combination of the fan and the geometry after the fan.
Technical Paper

Continuing Cooling Performance Investigation of a Rear Mounted Cooling Package for Heavy Vehicles

2011-09-13
2011-01-2285
This investigation is a continuing analysis of the cooling performance and aerodynamic properties of a rear-mounted cooling module on a semi-generic commercial vehicle, which was carried out by Larsson, Löfdahl and Wiklund. In the previous study two designs of the cooling package installation were positioned behind the rear wheelhouse and the results were compared to a front-mounted cooling module. The investigation was mainly focused on a critical cooling situation occurring at lower vehicle speeds for a local distribution vehicle. The conclusion from the study was that the cooling performance for one of the rear-mounted installation was favorable compared to the front-mounted cooling package. This was mainly due to the low vehicle speed, the high fan speed and to fewer obstacles around the cooling module resulting in a lower system restriction within the installation.
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
X