Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Study of the Impact on the Combustion Process of Injector Nozzle Layout creating Enhanced Secondary Spray Break-up

The paper presents a study of a key-element in the mixture preparation process. A typical common-rail (CR) high-pressure fuel injector was fitted with a prototype injector nozzle with atomizer bores of a particular conical layout. It is demonstrated within certain layout limits, that a considerable enhancement can be obtained for the secondary break-up of the hard-core fluid sprays produced by the nozzle. The impact on the combustion process is examined in terms of pressure and heat release as well as of the engine-out pollutant emission. The results are compared to those of an earlier developed CR high-pressure injector nozzle. The atomization behavior of the prototype nozzle is illustrated through experimental results in terms of engine-out emissions from a 1.3-liter turbo-charged passenger car diesel engine. The detailed spray behavior is visualized on a component test rig by use of specially developed optical visualization techniques.
Technical Paper

Study of the Impact of Variations in the Diesel-Nozzle Geometry Parameters on the Layout of Multiple Injection Strategy

In the present paper the impact of three different geometrical layouts of the discharge nozzle of a high-pressure diesel injector designed is examined for a common rail second generation direct injection system. The paper presents a comparative study of the spray behavior of the three different nozzle layouts connected to a 150 MPa rail-pressure when mounted on a 1.6 liter European passenger car engine. To evaluate experimentally the differences in the fundamental physical spray parameters several specially developed optical visualization techniques are used, which enable phase-Doppler, Laser-sheet and high-speed recordings of dense high pressure sprays. The change in basic spray parameters (time-resolved droplet distribution and spray momentum) caused by the nozzle geometry variation is examined. The impact on the in-cylinder penetration and mixing characteristics is studied with a 3D-numerical simulation code NCF-3D.
Technical Paper

Study of the Benefits and Drawbacks of a Substantial Increase of Rail-Pressure in GDI-Injector Assemblies

In the present paper are examined the consequences of a substantial rise in the injection pressure for Gasoline Direct Injection (GDI) injector assemblies. The paper presents a comparative study of the spray behavior of two different injector nozzle layouts submitted to current 10 Mpa rail-pressure as well as to a 30 Mpa injection pressure. To evaluate the differences in the fundamental physical spray parameters are used several specially developed optical visualization techniques, which enable phase-Doppler, PIV, Laser-sheet and high-speed recordings of dense high pressure fuel sprays. A recently developed injector actuator and the necessary modifications to existing high-pressure pumps to reach a 30 MPa pressure level in the fuel system are presented. The change in basic spray parameters (time-resolved droplet distribution and spray momentum) caused by the rail-pressure rise is examined.
Technical Paper

Streamline Visualisation by Laser Sheet Imaging - A Useful Complementary Optimisation Tool for Intake Manifold Design

The paper describes the application of laser sheet flow visualisation with numerical image analysis as a useful complementary tool to numerical simulation techniques for the optimisation of fluid dynamics within SI-engine in-take systems. The lay-out of the laser sheet visualisation system and the applied numerical image analysis are discussed in detail. Two applicative examples are given, one of smoke induced visualisation of the internal gas flow of an intake manifold, the other of natural visualisation of fuel injector wall film deposit in the intake runner. Finally is concluded that the addition of visualisation techniques to the development strategy allows a time gain, because it contributes to a rapid understanding of complex flow phenomena.
Technical Paper

Presentation of the new third Generation “Green” injector Family, PICO-ECOlogical, developed for further Improvement of Flex-fuel Engine Performance.

The paper presents a description of the development phases of the new third generation of “green” fuel injectors. The development objective for the new PICO-ECOlogical injector was to define a layout, which enables an optimal parameter configuration for both the mixture preparation (high flexibility to adapt different atomizer plate structures) and the manufacturing processes. It is demonstrated in which way the use of high-level numerical simulation and visualization techniques have become an integrated part of the development process. A detailed description is given of the new layout with respect to earlier versions and the advantageous new features obtained are discussed. Test results obtained by the new 3rd-generation injector layout are presented. The impact of the improved dynamic response capability is explained and experimental data at both engine test rig and vehicle FTP-cycle conditions are reported and discussed.
Technical Paper

New Developments in Fuel Injector Atomizer Layouts for Port Fuel Injection Applications to Meet PL6 and ULEV Requirements

The paper presents the background research on the physics of the droplet coalescence phenomena carried out by an interactive usage of high-level 3-D numerical simulation tools and high-level optical visualization and measurement techniques. The presentation continues with the description of a new injector atomizer plate layout, which enables a physical coalescence control of the droplet population within the entire fuel spray. Finally are presented examples of the impact on exhaust emissions of the introduction the new atomizer plate with coalescence control by engine test bed experiments (steady state low load conditions) and vehicle tests (first cold part of the FTP-cycle).
Technical Paper

Minimization of Particulate Raw Emissions from CR-Diesel Engines - A Key-Element to Limit the Increase in Complexity of Exhaust Gas After-Treatment

The present paper describes a study of the basic parameters, which govern particulate (soot) formation within the combustion chamber of a small displacement (1.3 liter) turbocharged European CR-diesel engine. The main tools used for the study are a real fired engine, a numerical virtual engine and a special high ambient pressure vessel for injector spray visualization. The paper describes an improved soot formation model implemented in the virtual engine setup. A comparison is presented between measured and computed combustion data at 8 different load points. The paper concludes with a discussion of the means, which can be used to minimize the particulate matter formation in the design phase of both the combustion layout and the fuel injector atomizer as well as in the design of the injection control strategies.
Technical Paper

Experimental and Numerical Study of Spray Generated by a High Pressure Gasoline Swirl Injector

Experimental measurements and numerical computations were made to characterize a spray generated by a high-pressure swirl injector. The Phase Doppler technique was applied to get information on droplet sizes (d10) and axial velocities at defined distances from the injector tip. Global spray visualization was also made. Computations were carried out using a modified version of KIVA 3V. In particular, the break-up length of the sheet and its dimension were computed from a semi-empirical correlation related to the wave instability theory suggested by Dombrowski, including the modifications introduced by Han and Reitz. Two different approaches were used to describe the initial spray conditions. According to the first, discrete particles with a characteristic size equal to the thickness of the sheet are injected. The second approach assumes, that the particles having a SMD computed by a semi-empirical correlation are injected according to a statistical distribution.
Technical Paper

Experimental and Numerical Approach to Productionizing a GDI-2 Stroke Spark Ignited Small Displacement Engine Design

The first part of the paper gives an overview of the environmental conditions with which a future two stroke powered vehicle must comply and explains the reasons for which a direct gasoline injection into the combustion chamber offers a potential solution. The paper continues with a description of the fuel/air mixture injection used in the F.A.S.T. concept and gives a detailed overview of the layout of the 125 cc engine to which it is applied. The structure of its electronic engine management system, mandatory for the necessary control precision, is presented. Hereafter is made a short introduction to the visualization and numerical computation tools used for the engine design optimization. The paper concludes with a detailed presentation and discussion of the experimental results obtained with the engine operated, either in steady state and transient conditions on an engine test rig, and mounted in a classic small dimension two-wheel vehicle submitted to road tests.
Technical Paper

Description of preliminary Study for Technology Transfer of an Ethanol Mixture Preparation System from Automotive Application to a 4-Cylinder 5.9 liter Aircraft Engine.

On the basis of the large amount of know-how accumulated in the field of automotive ethanol SI-engine fuelling in Brazil, it seemed appropriate to continue and set a new milestone in the usage of ethanol fuel. The paper presents the preliminary study made to enable the transfer of the ethanol technology to a 5.9-liter 4-cylinder boxer aircraft engine. The study describes the steps made to define the optimal parameter configuration for the transfer of the fuel system packaging, the fuel injector layout, the engine control unit (ECU) and the legislative redundancy requirements for aviation applications. The paper illustrates the use of numerical simulation techniques and special visualization approaches necessary to understand the physical phenomena of mixture preparation (spray atomization and momentum). Two different layouts are presented and discussed and a certain number of experimental results obtained with the retained solution are presented and discussed.