Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Lubrication Technology and Analysis for Variable Valve Event and Lift (VVEL) System

2009-06-15
2009-01-1837
A new Variable Valve Event and Lift (VVEL) system has been developed as an effective technology for reconciling environmental performance such as lowering the fuel consumption and exhaust emissions with driving performance. This system can continuously vary both the intake valve lift and event angle (valve opening duration) over a wide operating range to flexibly control the valve timing and lift for a substantial improvement in engine performance. In developing the variable valve lift control system, the essential merit is based on the fundmental configuration of multiple-link mechanism. However, it is required to resolve tribological issues for the specific mechnism. This paper describes the structure of the VVEL system and its operating and motion conversion principles. It also explains the mechanism analysis, dynamic stress analysis and lubrication simulation techniques used in developing the VVEL system, the materials adopted and the surface treatment techniques applied.
Journal Article

Analysis of Oil Film Generation on the Main Journal Bearing Using a Thin-Film Sensor and Elasto-Hydrodynamic Lubrication (EHL) Model

2013-04-08
2013-01-1217
Reducing friction in the crankshaft main bearings is an effective means of improving the fuel efficiency of reciprocating internal combustion engines. To realize these improvements, it is necessary to understand the lubricating conditions, in particular the oil film pressure distributions between crankshaft and bearings. In this study, we developed a thin-film pressure sensor and applied it to the measurement of engine main bearing oil film pressure in a 4-cylinder, 2.5 L gasoline engine. This thin-film sensor is applied directly to the bearing surface by sputtering, allowing for measurement of oil film pressure without changing the shape and rigidity of the bearing. Moreover, the sensor material and shape were optimized to minimize influence from strain and temperature on the oil film pressure measurement. Measurements were performed at the No. 2 and 5 main bearings.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
X