Refine Your Search

Topic

Search Results

Technical Paper

The Use of PLL Techniques for Accurate Time or Phase Synchronization in Aerospace and Automotive Systems

2011-10-04
2011-36-0179
Current systems such as satellites, aircrafts, automobiles, turbines, wind power generators and traffic controls are becoming increasingly complex and/or highly integrated as prescribed by the SAE-ARP-4754 Standard. Such systems frequently require accurate generation, distribution and time or phase synchronization of signals with different frequencies that may be based on one reference signal and frequency. But the environment fluctuations or the non-linear dynamics of these operations cause uncertainties (skew and jitter) in the phase or time of the reference signal and its derived signals. So, techniques to reduce those causes or their effects are becoming important aspects to consider in the design of such systems. The PLL techniques are useful for establishing coherent phase or time references, jitter reduction, skew suppression, frequency synthesis, and clock recovery in numerous systems such as communication, wireless systems, digital circuits, rotors, and others.
Technical Paper

The Application of a Requirements Traceability Automation Tool to the Documentation of a Satellite Project

2010-10-06
2010-36-0345
This paper presents the preliminary results of an "a posteriori" exercise of application of a Requirements Traceability Automation Tool (RT tool) to a set of documents. The documents have been prepared according to established Space System Engineering methodologies and with attention to text quality, but without attention to requirements traceability because the processes and methodologies used during their preparation predates the emergence of the processes and methodologies developed by Requirements Engineering (RE). This study is intended to determine some of the benefits of using a RT tool when compared with the previously used processes and methodologies. The set of documents under scrutiny have been prepared in the frame of the development of the CBERS-3 satellite (China-Brazil Earth Resources Satellite) and is composed of system, subsystem and equipment specification and covering documents related to the Electrical Power Subsystem (EPS) of the satellite.
Technical Paper

Refinements of the Kalman Estimates for the Position and Velocity of a Vehicle Obtained with GPS Using Inertial Navigation System's Measurements: A Comparative Analysis

2013-10-07
2013-36-0650
Currently, the use of Global Navigation Satellite Systems-GNSS has been widely disseminated for the most different applications, from the aeronautical navigation to the car traffic, being the Global Positioning System-GPS the most used system for such objectives. New applications have presented challenges in terms of the main requirements associated to such systems, namely: precision, reliability, availability, continuity and integrity. It is because proposed solutions, such as satellite or ground-based augmentation systems, depend on signals provided by the GNSS satellite constellation. It constitutes a limitation for using such systems for position and velocity estimations. On other hand, Inertial Navigation Systems-INS, being independent of external signals, have a big potential to be applied on these circumstances; furthermore, they present characteristics that may be considered complementary to the GNSS.
Technical Paper

Refinements of the GPS Kalman Estimates for the Position and Velocity of a Vehicle during High Acceleration Transients Using IMU Measurements

2012-10-02
2012-36-0513
Currently, the use of Global Navigation Satellite Systems-GNSS has been widely disseminated for the most different applications, from the aeronautical navigation to the car traffic system, being the Global Positioning System-GPS the most used system for such objectives. New applications of such systems have presented more demanding requirements in terms of precision for the position and velocity provided by these systems. Some solutions, as the precision augmentation systems based on satellite or ground improve the precision of the position and velocity estimates. However, the sampling rate of these systems is not substantially improved. Therefore, it constitutes a major limitation of such systems for the position and velocity estimates during high acceleration transients. On other hand, Inertial Navigation Systems- INSs present superior performance under these circumstances.
Technical Paper

Reconfiguration of Control Systems as Means for Reaching Fault Tolerance: An Assessing Study on Methods Available

2013-10-07
2013-36-0639
The realization of modern systems subjected to automatic control, such as aircraft, automobiles, satellites, rocket launchers, cargo and military ships, and so forth; increasingly assume, within its very set of requirements, the task of providing better dependability, i.e.: safety, reliability, and availability altogether. Towards this demand, fault-tolerant control greatly meets such growing demand of dependability, by its ability of recognizing the occurrence of potentially hazardous/hazardous faults within the overall (closed-loop) system, and by taking remedial action whenever necessary/mandatory. The process of fault tolerance can be segregated into two fundamental steps: (1) that of fault diagnosis, comprising fault detection-isolation-identification, and, (2) control adjustment/reconfiguration. This paper focuses on the second step, of control adjustment/reconfiguration.
Technical Paper

Propagation of Uncertainties in the Navigation of Aerospace Vehicles to Minimize the Collision Risk

2008-10-07
2008-36-0407
One challenge that the space, aeronautical and automotive industries are facing today is the fast growing number of vehicles versus the slowly growing number of useful orbits, routes, and speedways. Furthermore, the adoption of “free-flight”, “speed-drive”, etc. policies in the near future will only aggravate it. All these factors increase the risk of collisions and the frequency of deviation maneuvers to avoid them. But they also create the opportunity to devise policies to mitigate such problems, including algorithms to propagate the uncertainties in vehicle motions and to predict the risk of their collisions. This work discusses the development and simulation of an algorithm for the propagation of navigation uncertainties in the trajectory of aerospace vehicles, to minimize the risk of collisions. The scenario of Satellites Formation Flying shall be used for the simulations, with focus on the prediction of the collision probability.
Technical Paper

Modeling and Simulation of a Satellite Propulsive Subsystem by Physical and Signal Flows

2013-10-07
2013-36-0105
Modeling and Simulation (M&S) of dynamic systems based on computers is a multidisciplinary field that involves several knowledge areas and tools, and is broadly used in all development areas of space industry such as rocket and satellite design and construction. Once space systems are divided into several subsystems for ease of engineering, their models are divided the same way for the same reason. Such models may be done using different computational tools that are based on either physical flows, informational flows, or hybrid flows, depending on the subsystem nature. This is specially true for a satellite propulsion subsystem, and its physical (volume, mass, energy, enthalpy, entropy, linear momentum, etc.) flows. This paper presents the modeling and simulation of a satellite propulsion subsystem by physical and signal flows. To accomplish this task, two different computational tools were used: AMESim and MatLab.
Technical Paper

Influence of Sharing Bus on Real-Time Networked Control Systems Performance

2007-11-28
2007-01-2692
A major trend in modern aerospace and automotive systems is to integrate computing, communication and control into different levels of the vehicle and/or its supervision. A well fitted architecture adopted by this trend is the common bus network architecture. A Networked Control System (NCS) is called when the control loop is closed through a communication network. The presence of this communication network introduces new characteristics (sharing bus, delays, jitter,etc) to be considered at design time of a control system. This work focuses on the effect of sharing bus between the control system and the other devices connected to the bus foreigner to control. These last devices are called interferences. We intented to show, through simulations, the influence of sharing bus on real time control systems performance. To compare effects, we choose the CanBus protocol where the medium access control is event driven; and the TTP protocol where the medium access control is time driven.
Technical Paper

Generation and Customization of Real Time Code for Embedded Controllers Using a Modeling and Simulation Environment

2007-11-28
2007-01-2924
This works presents the generation and customization of real time code for embedded controllers using a modeling and simulation environment. When the controller model is considered satisfactory, the developers can use a code generation tool to build a real time source code capable to be migrated to an embedded target processor. The code generation tool used is capable to generate real time code in ANSI C or ADA 95 languages. This process can be customized to adequate to a target processor and/or a Real Time Operating System (RTOS). The code customization can be achieved using a specific Template Programming Language (TPL) that specifies how the code will be generated. This technique makes it possible the instantiation of real time embedded controllers code using the same controller model to a wide variety of target processors and/or RTOSs.
Technical Paper

Current Trends Driving the Aerospace and Automotive Systems Architectures

2011-10-04
2011-36-0387
In this work we discuss current trends driving the aerospace and automotive systems architectures. This includes trends as: 1) pos-globalization and regionalization; 2) the formation of knowledge oligopolies; 3) commonality, standardization and even synergy (of components, tools, development process, certification agents, standards); 4) reuse and scalability; 5) synergy of knowledge and tools convergence; 6) time, cost and quality pressures and innovation speed; 7) environmental and safety issues; and 8) abundance of new technologies versus scarcity of skilled manpower to apply them.
Technical Paper

Bump Reduction for the Reconfigurable Control Architecture of the MultiMission Platform

2011-10-04
2011-36-0187
Many control systems switch between control modes according to necessity. That is often simpler than designing a full control to all situations. However, this creates new problems, as determining the composed system stability and the transient during switching. The latter, while temporary, may introduce overshooting that degrade performance and damage the plant. This is particularly true for the MultiMission Platform (MMP), a generic service module currently under design at INPE. Its control system can be switched among nine main Modes of Operation and other submodes, according to ground command or information coming from the control system, mainly alarms. It can acquire one and three axis stabilization in generic attitudes, with actuators including magnetotorquers, thrusters and reaction wheels.
Technical Paper

Application of Methods to Smooth the Transition Between Control Submodes in the Nominal Mode of the Multimission Platform

2012-10-02
2012-36-0378
The Multimission Platform (MMP) is a generic service module currently in Project at INPE. In the 2001 version, its control system can be switched between nine main Operation Modes and other submodes, according to information from satellite sensors and ground commands. The Nominal Mode stabilizes the MMP in three axes and takes it to a nominal attitude, using three reaction wheels. Each wheel has coarse and fine acquisition submodes. The use of multiple modes of control for specific situations frequently is simpler than projecting a single controller for all cases. However, besides being harder to warrant its general stability, the mere switching between these submodes generates bumps, which can reduce the performance and even damage the actuator or plant. In this work, we present an application of diverse methods to smooth the transition between control submodes of the Nominal Mode of the MMP.
Technical Paper

Analysis, Design and Simulation of the Transition from Pre-Nominal to Nominal Mode of the Reconfigurable Control Architecture for the Multi-Mission Platform

2008-10-07
2008-36-0343
This work presents the first part of the analysis, design and simulation of the reconfigurable control architecture for the Multi-Mission Platform (MMP), a generic service module currently under design at INPE. Its control system can be switched among nine main Modes of Operation. The implementation followed the specifications when they were found, otherwise it was designed. The manager block of the control system was implemented as a finite state machine. The tests were based in simulations with the MatriX/SystemBuild software. They focused mainly on the worst cases that the satellite is supposed to endure in its mission.
Technical Paper

Analysis, Design and Simulation of the Reconfigurable Control Architecture for the Contingency mode of the Multimission Platform

2010-10-06
2010-36-0333
This work presents the analysis, design and simulation of the reconfigurable control architecture for the contingency mode of the MultiMission Platform (MMP). The MMP is a generic service module currently under design at INPE. Its control system can be switched among nine main Modes of Operation and other Sub-Modes, according to ground command or information coming from the control system, mainly alarms. The implementation followed the specifications when they were found, otherwise it was designed. They cover operations from detumbling after launcher separation and solar acquisition, to achieving payload nominal attitude and orbital corrections maneuvers. The manager block of the control system was implemented as a finite state machine. The tests are based in simulations with the MatriX/SystemBuild software. They focused mainly on the worst cases that the satellite is supposed to endure in its mission, be it during modes or transitions between modes and submodes.
Technical Paper

An Overview of Models, Methods and Tools for Verification, Validation and Accreditation of Real Time Critical Software

2013-10-07
2013-36-0530
Real-time critical systems are those whose failures may cause loss of transactions/data, missions/batches, vehicles/properties, or even people/human life. Accordingly, some regulations prescribe their maximum acceptable probability of failures to range from about 10−4 to 10−10 failures per hour. Examples of such systems are the ones involving nuclear plants, aircrafts, satellites, automobiles, or traffic controls. They are becoming increasingly complex and/or highly integrated as prescribed by the SAE-ARP-4754A Standard. Those systems include, most of the time, real time critical software that must be specified, designed, implemented, validated, verified and accredited (VVA). To do that, models, specially the V-Model, are frequently adopted, together with methods and tools which perform software VVA to ensure compliance (of correctness, reliability, robustness, etc.) of software to several specific standards such as DO178-B/DO-178C (aviation) or IEC 26262 (automotive) among others.
Technical Paper

An Overview of Data Transmission Used in UAVs for Remote Sensing Surveillance and Environmental Management Systems

2015-09-22
2015-36-0543
The increasing development of Unmanned Aerial Vehicle (UAV) technologies has allowed greater use of UAVs as remote sensing platforms to enhance satellite and manned aerial vehicle remote sensing surveillance and environmental management systems. Particularly, the Brazilian National Institute for Space Research - INPE has an Environmental Data Collection System (SCD) since 1993. Recently, the MCTI (Ministry of Science, Technology and Innovation) opened the National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN). Both may need additional resources for their expansions in the near future as offered by UAV technologies. These needs illustrate the potential of UAV technologies as complement to existing or future systems. This paper presents an overview of data transmission used in UAVs for remote sensing surveillance and environmental management systems.
Technical Paper

An Overview of Clock Synchronization Algorithms and their Uses in Aerospace and Automotive Systems

2013-10-07
2013-36-0541
Current systems such as satellites, aircrafts, automobiles, turbines, power controls and traffic controls are becoming increasingly complex and/or highly integrated as prescribed by the SAE-ARP-4754a Standard. Such systems operate in a real time distributed environment which frequently requires a common knowledge of time among different devices, levels and granularities. So, temporal correctness is mostly needed, besides logical correctness. It can be achieved by hardware clocks and devices, software clocks and algorithms, or both, to avoid or tolerate, within appropriate margins, the time faults or failures that may occur in aerospace and automotive systems. This paper presents an overview of clock synchronization algorithms and their uses in aerospace and automotive systems. It is based on a review of the literature, discussion and comparison of some clock synchronization algorithms with different policies.
Technical Paper

An Investigation on Techniques for Accurate Phase or Time Synchronization in Reconfigurable Control Systems

2012-10-02
2012-36-0398
Current systems such as: satellites, aircrafts, automobiles, turbines, power controls and traffic controls are becoming increasingly complex and/or highly integrated as prescribed by the SAE-ARP-4754 Standard. Such systems and their control systems use many modes of operation and many forms of redundancy to achieve high levels of performance and high levels of reliability under changing environments and phases of their lifecycle. The environment disturbances, environment variability, plant non-linear dynamics, plant wear, plant faults, or the non-symmetric plant operation may cause de-synchronization in phase or time among: 1) simultaneous units in the same normal mode of operation; 2) successive units in successive normal modes of operation; 3) main and spare units from normal to faulty modes of operation. So, techniques to reduce those causes or their effects are becoming important aspects to consider in the design of such systems.
Technical Paper

A discussion on the interaction between Project Management and Systems Engineering to improve the Dependability of Space and Automotive Projects

2017-11-07
2017-36-0373
Complex and/or highly integrated systems require the evaluation of Dependability (Reliability, Maintainability, Availability, etc.) throughout their life cycle. The designs of these systems have three main sets of activities: managerial, technical and quality. The recent literature suggests that: 1) the growth of the committed project cost is much greater than the cost spent in the initial stages; and also, the cost to eliminate the defects is smaller in the initial stages of project; and 2) the functions, responsibilities, and authorities of Project Management and Systems Engineering are strongly coupled. Thus, based on the recent literature and the INPE´s (National Institute for Space Research) experience, this paper will show a discussion on the interaction between Project Management and Systems Engineering to improve the Dependability of space and automotive projects.
Technical Paper

A discussion on fault prognosis/prediction and health monitoring techniques to improve the reliability of aerospace and automotive systems

2018-09-03
2018-36-0316
Currently, aerospace and automotive industries are developing complexand/or highly integrated systems, whose services require greater confidence to meet a set of specifications that are increasingly demanding, such as successfully operating a communications satellite, a commercial airplane, an automatic automobile, and so on. To meet these requirements and expectations, there is a growing need for fault treatment, up to predict faults and monitor the health of the components, equipment, subsystems or systems used. In the last decades, the approaches of 1) Fault Prevention, 2) Fault Detection/Tolerance and 3) Fault Detection/Correction have been widely studied and explored.
X