Refine Your Search

Topic

Author

Search Results

Journal Article

Thermal Shock Protection for Diesel Particulate Filters

2011-12-15
2011-01-2429
During a thermal regeneration of a Diesel particulate filter (DPF) the temperature inside the DPF may raise above critical thresholds in an uncontrolled way (thermal shock). Especially driving conditions with a comparable low exhaust gas mass flow and high oxygen content like idle speed may create a thermal shock. This paper presents a concept for an ECU software structure to prevent the DPF from reaching improper temperatures and the methodology in order to calibrate this ECU structure. The concept deals in general with a closed-loop control of the exhaust gas air-fuel-ratio during the critical engine operation phases. Those critical operation phases are identified at the engine test bench during “Drop-to-Idle” and “Drop-to-Overrun” experiments. The experiments show that those phases are critical having on the one hand a low exhaust gas mass flow and on the other hand a high oxygen percentage in the exhaust gas.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Super Ultra-Low NOX Emissions under Extended RDE Conditions - Evaluation of Light-Off Strategies of Advanced Diesel Exhaust Aftertreatment Systems

2019-04-02
2019-01-0742
Super ultra-low NOX emission engine concepts are essential to comply with future emission legislations. To meet the future emission standards, application of advanced diesel exhaust aftertreatment systems (EATS), such as Diesel Oxidation Catalyst (DOC), Lean NOX Trap (LNT), Selective Catalytic Reduction coatings on Soot Filters (SCRF) and underfloor SCR, is required. Effective customized thermal management strategies are essential to ensure fast light-off of the EATS after engine cold start, and to avoid significant cooldown during part load operation. The authors describes the investigation of different exhaust gas heating measures, such as intake throttling, late fuel injection, exhaust throttling, advanced exhaust cam phasing, retarded intake cam phasing, cylinder deactivation, full turbine bypass, electric catalyst heating and electrically heated intake manifold strategies.
Technical Paper

Simulation and Optical Analysis of Oil Dilution in Diesel Regeneration Operation

2011-08-30
2011-01-1844
High levels of exhaust temperature or rich mixtures are necessary for the regeneration of today's diesel particulate filters or NOx catalysts. Therefore, late main injection or post injection is an effective strategy but leads to the well-known problem of lubricating oil dilution depending on the geometry, rail pressure and injection strategy. In this paper a method is developed to simulate fuel entrainment into the lubricating oil wall film in the diesel combustion chamber to predict oil dilution in an early design stage prior to hardware availability for durability testing. The simulation method integrates a newly developed droplet-film interaction model and is compared to results of an optical single-cylinder diesel engine and a similar thermodynamic single-cylinder test engine. Phenomena of diesel post injection like igniting early post injection or split post injections with short energizing times are considered in this paper.
Technical Paper

Relevance of Exhaust Aftertreatment System Degradation for EU7 Gasoline Engine Applications

2020-04-14
2020-01-0382
Exhaust aftertreatment systems must function sufficiently over the full useful life of a vehicle. In Europe this is currently defined as 160.000 km. With the introduction of Euro 7 it is expected that the required mileage will be extended to 240.000 km. This will then be consistent with the US legislation. In order to quantify the emission impact of exhaust system degradation, an Euro 7 exhaust aftertreatment system is aged by different accelerated approaches: application of the Standard Bench Cycle, the ZDAKW cycle, a novel ash loading method and borderline aging. The results depict the impact of oil ash on the oxygen storage capacity. For tailpipe emissions, the maximum peak temperatures are the dominant aging factor. The cold start performance is effected by both, thermal degradation and ash accumulation. An evaluation of this emission increase requires appropriate benchmarks.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Technical Paper

Potentials of Variable Compressor Pre Swirl Devices in Consideration of Different Sealing Concepts

2013-04-08
2013-01-0934
For turbocharged engines high specific power and torque output as well as a fast transient response are mandatory. This conflict of aims can be solved by different charging systems, for example 2-stage charging or variable turbine geometry. At the Institute for Combustion Engines (VKA) at RWTH Aachen University another alternative, the variable compressor pre swirl, was investigated for solving this conflict of aims. Based on theoretical fundamentals the potentials of a variable compressor pre swirl for transient response, low end torque, specific power output and fuel consumption were presented. These theoretical potentials were explored on turbocharger -, engine - and vehicle test bench. An extended compressor map with partial higher compressor efficiency of up to 2% was detected. The outcome of this is an increase of up to 6% in low end torque, found on engine test bench. This effect could also be validated in 1D simulation.
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Technical Paper

Parallel Sequential Boosting for a Future High-Performance Diesel Engine

2022-01-12
2022-01-5005
Future Diesel engines must meet extended requirements regarding air-fuel ratio, exhaust gas recirculation (EGR) capability, and tailored exhaust gas temperatures in the complete engine map to comply with the future pollutant emission standards. In this respect, parallel turbines combined with two separate exhaust manifolds have the potential to increase the exhaust gas temperature upstream of the exhaust aftertreatment system and reduce the catalyst light-off time. Furthermore, variable exhaust valve (EV) lifts enable new control strategies of the boosting system without additional actuators. Therefore, hardware robustness can be improved. This article focuses on the parallel-sequential boosting concept (PSBC) for a high-performance four-cylinder Diesel engine with separated exhaust manifolds combined with EV deactivation. One EV per cylinder is connected to one of the separated exhaust manifolds and, thus, connected to one of the turbines.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Journal Article

On the Measurement and Simulation of Flow-Acoustic Sound Propagation in Turbochargers

2019-06-05
2019-01-1488
Most of today’s internal combustion engines are turbocharged by combined radial compressors and turbines for downsizing. This mostly leads to reduced orifice noise of both intake and exhaust systems, but the detailed damping mechanisms remain yet unknown. Intake and exhaust systems are developed with 1D-CFD simulations, but validated acoustic sub-models for turbochargers are not yet available. Therefore the aim of this publication is studying the turbocharger’s silencing capabilities and subsequently develop new acoustic turbocharger models. The acoustic properties of the turbocharger can be well described by transmission loss. In addition to thermodynamic variations, parameter variations with wastegate and VTG systems were also performed. A total of four turbochargers of very different sizes were investigated. Low frequency attenuation is dominated by impedance discontinuities, increasing considerably with mass flow and pressure ratio.
Technical Paper

Objectified Drivability Evaluation and Classification of Passenger Vehicles in Automated Longitudinal Vehicle Drive Maneuvers with Engine Load Changes

2019-04-02
2019-01-1286
To achieve global market and brand specific drivability characteristics as unique selling proposition for the increasing number of passenger car derivatives, an objectified evaluation approach for the drivability capabilities of the various cars is required. Thereto, it is necessary to evaluate the influence of different engine concepts in various complex and interlinked powertrain topologies during engine load change maneuvers based on physical criteria. Such an objectification approach enables frontloading of drivability related engineering tasks by the execution of drivability development and calibration work within vehicle subcomponent-specific closed-loop real-time co-simulation environments in early phases of a vehicle development program. So far, drivability functionalities could be developed and calibrated only towards the end of a vehicle development program, when test vehicles with a sufficient level of product maturity became available.
Technical Paper

Internal and External Measures for Catalyst Light-Off Support

2015-09-06
2015-24-2501
Within a project of the Research Association for Combustion Engines e.V., different measures for rising the temperature of exhaust gas aftertreatment components of both a passenger car and an industrial/commercial vehicle engine were investigated on a test bench as well as in simulation. With the passenger car diesel engine and different catalyst configurations, the potential of internal and external heating measures was evaluated. The configuration consisting of a NOx storage catalyst (NSC) and a diesel particulate filter (DPF) illustrates the potential of an electrically heated NSC. The exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC) and a DPF shows in simulation how variable valve timing in combination with electric heated DOC can be used to increase the exhaust gas temperature and thus fulfill the EU6 emission limits.
Technical Paper

Integrated Air Supply and Humidification Concepts for Fuel Cell Systems

2001-03-05
2001-01-0233
In this paper different air management system concepts including mechanical superchargers and turbochargers are analysed with regard to their suitability for fuel cell applications. Therefore a simulation model which takes the main mass, energy and heat flows in the fuel cell system including fuel evaporation, reformer, gas cleaning, humidification, burner and compressor/expander unit into account was setup. For a PEM system with methanol steam reformer the best system efficiencies at rated power can be achieved with a turbocharger in combination with a tailgas burner for operating pressures between 2.5 and 2.8 bar. For pure hydrogen systems the best system efficiency is obtained with an electric driven supercharger for a maximum pressure of 2 bar and an appropriate pressure strategy during part load operation in the complete operating range. The increase of system efficiency for pressurized stack operation is mainly attributed to advantages with regard to water management.
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
Technical Paper

Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

2020-09-15
2020-01-2212
With Post Euro 6 emission standards in discussion, stricter particulate number (PN) targets as well as a decreased PN cut-off size from 23 to 10 nm are expected. Sub-23 nm particulates are considered particularly harmful to human health, but are not yet taken into account in the current vehicle certification process. Not considering sub-23 nm particulates during the development process could lead to significant additional efforts for Original Equipment Manufacturers (OEM) to comply with future Post Euro 6 PN emission limits. It is therefore essential to increase knowledge about the formation and filtration of particulates below 23 nm. In the present study, a holistic Gasoline Particulate Filter (GPF) characterization has been carried out on an engine test bench under varying boundary conditions and on a burner bench with a novel ash loading methodology.
Journal Article

Gas Bubble Development in Connecting Rod Supply Systems Caused by Oil Aeration

2020-09-15
2020-01-2163
This paper focusses on the supply conditions of a connecting rod bearing. Thereto, a novel simulation approach is presented, which is based on a transient 3D-CFD multiphase flow simulation including the ability of gas dissolution and diffusive mass transfer. The model determines the pressure behavior and the gas bubble development in the oil supply system of a connecting rod bearing. It allows to visualize the flow behavior and the existence of gas bubbles in order to get a detailed impression of the physical occurrences. The experimental results from Maaßen [5], where a big gas bubble is formed in the supply bore by gas cavitation, are confirmed and used for validation. Further the flow behavior of free air ratios is investigated. The paper concludes that the supply conditions of a connecting rod bearing are strongly influenced by the gas bubble in terms of the fluid composition and the volume flow rate at the connecting rod bearing inlet.
Technical Paper

Experimental Investigations on the Influence of Valve Timing and Multi-Pulse Injection on GCAI Combustion

2019-04-02
2019-01-0967
Gasoline Controlled Auto-Ignition (GCAI) combustion, which can be categorized under Homogeneous Charge Compression Ignition (HCCI), is a low-temperature combustion process with promising benefits such as ultra-low cylinder-out NOx emissions and reduced brake-specific fuel consumption, which are the critical parameters in any modern engine. Since this technology is based on uncontrolled auto-ignition of a premixed charge, it is very sensitive to any change in boundary conditions during engine operation. Adopting real time valve timing and fuel-injection strategies can enable improved control over GCAI combustion. This work discusses the outcome of collaborative experimental research by the partnering institutes in this direction. Experiments were performed in a single cylinder GCAI engine with variable valve timing and Gasoline Direct Injection (GDI) at constant indicated mean effective pressure (IMEP). In the first phase intake and exhaust valve timing sweeps were investigated.
Technical Paper

Exhaust Emission Reduction of Combustion Engines by Barrier Discharge - A new Reactor/Generator System

1999-10-25
1999-01-3638
An improved plasma reactor has been designed, built and evaluated. It is characterized by a reduced power per area ratio, relative to previous designs, and includes several improvements to run the whole system safely in a car. The new reactor design includes a concentric inner high voltage electrode, a grounded outer electrode, a shielded high-voltage and high temperature resistant electrical connection. A generator controller has been developed for better control of operating conditions as required during the engine cold start phase. The new generator/reactor system was installed in the exhaust pipe of a gasoline direct injection engine. HC emissions could be reduced up to 30 % in the first 40 seconds of a cold start test. In addition to HC treatment the dielectric barrier discharge has also been investigated as a method for regenerating a diesel particulate trap.
X