Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Time Series Analysis of Diesel Exhaust Gas Emissions Under Transient Operation

1993-03-01
930976
Time series analysis of diesel exhaust gas emissions under transient operation was carried out using a uniquely developed gas sampling system to efficiently collect all exhaust gas throughout transient cycles. The effects of fuel properties and other engine operation parameters on the exhaust emissions under transient runs when fuel amounts abruptly increase were analyzed. The results showed that THC increased abruptly to 2 or 6 times the final steady-state concentration immediately after the start of acceleration and then decreased to the steady-state values after 70∼200 cycles. At acceleration, NOx increased abruptly to about 80 % of the final NOx concentration, and then increased gradually to reach the final values after 60∼500 cycles. The behaviors of THC and NOx during transient operation can be described by exponential functions of the elapsed cycle numbers and the final emission concentrations.
Technical Paper

The Influence of Fuel Properties on Diesel-Soot Suppression with Soluble Fuel Additives

1991-02-01
910737
Diesel soot suppression effects of catalytic fuel additives for a range of fuels with different properties were investigated with calcium naphthenate. A single cylinder DI diesel engine and a thermobalance were used to determine the soot reduction and its mechanism for seven kinds of fuels. Experimental results showed that the catalytic effect of the fuel additive was different for the different fuels, and could be described by a parameter considering cetane number and kinematic viscosity. The fuel additives reduced soot more effectively for fuels with higher cetane number and lower kinematic viscosity. This result was explained by soot oxidation characteristics for the different fuels. Oxidation of soot with the metallic additive proceeds in two stages: stage I, a very rapid oxidation stage; and stage II, a following slow or ordinary oxidation stage.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines

2016-10-17
2016-01-2292
The effects of lubricant oil and fuel properties on low speed pre-ignition (LSPI) occurrence in boosted S.I. engines were experimentally evaluated with multi-cylinder engine and de-correlated oil and fuel matrices. Further, the auto-ignitability of fuel spray droplets and evaporated homogeneous fuel/oil mixtures were evaluated in a combustion bomb and pressure differential scanning calorimetry (PDSC) tests to analyze the fundamental ignition process. The work investigated the effect of engine conditions, fuel volatility and various lubricant additives on LSPI occurrence. The results support the validity of aspects of the LSPI mechanism hypothesis based on the phenomenon of droplets of lubricant oil/fuel mixture (caused by adhesion of fuel spray on the liner wall) flying into the chamber and autoigniting before spark ignition.
Technical Paper

Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions

2019-01-15
2019-01-0035
In recent years, boosted and downsized engines have gained much attention as a promising technology to improve fuel economy; however, knocking is a common issue of such engines that requires attention. To understand the knocking phenomenon under downsized and boosted engine conditions deeply, fuels with different Research Octane Number (RON) and Motor Octane Number (MON) were prepared, and the knocking performances of these fuels were evaluated using a single cylinder engine, operated under a variety of conditions. Experimental results showed that the knocking performance at boosted conditions depend on both RON and MON. While higher RON showed better anti-knocking performance, lower MON showed better anti-knocking performance. Furthermore, the tendency for a reduced MON to be beneficial became stronger at lower engine speeds and higher boost pressures, in agreement with previously published modelling work.
Technical Paper

Is the “K Value” of an Engine Truly Fuel Independent?

2020-04-14
2020-01-0615
The octane appetite of an engine is frequently characterised by the so-called K value. It is usually assumed that K is dependent only on the thermodynamic conditions in the engine when knock occurs. In this work we test this hypothesis: further analysis was conducted on experimental results from SAE 2019-01-0035 in which a matrix of fuels was tested in a single cylinder engine. The fuels consisted of a relatively small number of components, thereby simplifying the analysis of the chemical kinetic proprieties. Through dividing the original fuel matrix into subsets, it was possible to explore the variation of K value with fuel properties. It was found that K value tends to increase slightly with RON. The explanation for this finding is that higher RON leads to advanced ignition timing (i.e. closer to MBT conditions) and advanced ignition timing results in faster combustion because of the higher pressures and temperatures reached in the thermodynamic trajectory.
Technical Paper

Influence of the Molecular Structure of Hydrocarbon Fuels on Diesel Exhaust Emissions

1994-03-01
940676
The influence of the molecular structure of hydrocarbon fuels on soot, SOF, and NOx emissions from a diesel engine was analyzed while ignition delay and other physical fuel properties were kept constant. Mixtures of normal paraffin (n-tetradecane) and iso-paraffin (heptamethylnonane) were used as a base fuel and one of 5 kinds of hydrocarbons including mono-aromatic, di-aromatic, and non-aromatic was added. The aromatic content varied in the range of 0-60 vol % for the mono-aromatic fuels and 0-40 vol % for the di-aromatic fuels. The experimental results showed that regardless of the molecular structure of the fuel, both particulate and NOx emissions increased linearly with the C/H atomic ratio of the fuels under constant ignition lag. The increase in particulate emissions with C/H atomic ratio was caused by increases in dry soot. The SOF, THC, and BSEC were little affected by the C/H atomic ratio and molecular structure of the fuels.
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

2008-10-06
2008-01-2494
Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Effects of Fuel Properties on the Performance of Advanced Diesel NOx Aftertreatment Devices

2006-10-16
2006-01-3443
In the Japan Clean Air Program II (JCAP II) Diesel WG, effects of fuel properties on the performance of two types of diesel NOx emission aftertreatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined. For a Urea-SCR system, the NOx emission reduction performance with and without an oxidation catalyst installed in front of the SCR catalyst at low exhaust gas temperature operation was compared. For an NSR catalyst system, the effect of fuel sulfur on both emissions and fuel economy during 50,000 km driving was examined. Furthermore, effects of other fuel properties such as distillation on exhaust emissions were investigated. The results show that sulfur is the influential factor for both devices. Namely, high NOx emission reduction performance of the Urea-SCR system with the oxidation catalyst at low exhaust gas temperature operation is influenced by sulfur.
Technical Paper

Distinguishing the Effects of Aromatic Content and Ignitability of Fuels in Diesel Combustion and Emissions

1991-10-01
912355
The influence of aromatic content in fuels on the soot and NOx emissions from a diesel engine was analyzed under controlled ignition lags with spark-assisted operation. Monocyclic aromatic hydrocarbons and n-hexane mixtures were used as fuels, and the aromatic content was varied from 0 to 75 v-%. The experiments showed that, at the same equivalence ratio and regardless of the molecular structure of the fuel, the soot concentration in the exhaust gas could be described by a linear-combination function with two variables representing the ignition lag and C/H atom-ratio of the fuels. For unchanged ignition lags, the soot emissions increased linearly with increased C/H atom-ratios, which are controlled by the aromatic content. The degree of increase in soot emissions with increasing C/H atom-ratio decreased with decreasing equivalence ratios. The NOx emission increased slightly with increases in the C/H atom-ratio and ignition lag.
Technical Paper

Description of Diesel Emissions by Individual Fuel Properties

1992-10-01
922221
The effects of several fuel property variables on the emissions from a D.I. diesel engine were individually analyzed. The results showed that the smoke and dry soot increased with increased kinematic viscosity, shorter ignition lag, and higher aromatic content, especially at high equivalence ratios. Over the whole range of equivalence ratios, SOF depended on and increased with only ignition lag. The NOx improved slightly with increased kinematic viscosity, higher ignitability, and decreased aromatic content. The unburnt HC also improved with decreased kinematic viscosity and higher ignitability. The distribution shape of distillation curves had little influence on the emissions.
Technical Paper

Combination of Combustion Concept and Fuel Property for Ultra-Clean DI Diesel

2004-06-08
2004-01-1868
Experimental investigations were previously conducted with a direct-injection diesel engine with the aim of reducing exhaust emissions, especially nitrogen oxides (NOx) and particulate matter (PM). As a result of that work, a combustion concept, called Modulated Kinetics (MK) combustion, was developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion to achieve a cleaner diesel engine. In subsequent work, it was found that applying a low compression ratio was effective in expanding the MK combustion region on the high-load side. The MK concept was then combined with an exhaust after-treatment system and applied to a test vehicle. The results indicated the attainment of ULEV emission levels, albeit in laboratory evaluations. In the present work, the combination of the MK combustion concept and certain fuel properties has been experimentally investigated with the aim of reducing exhaust emissions further.
X