Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

UEGO-based Exhaust Gas Mass Flow Rate Measurement

New and upcoming exhaust emissions regulations and fuel consumption reduction requirements are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. Especially in the case of Compression Ignition (CI) engines, the HC-CO-NOx-PM after-treatment system is becoming extremely expensive and sophisticated, and the necessity to further reduce engine-out emission levels, without significantly penalizing fuel consumption figures, may lead to the adoption of intricate and challenging intake-exhaust systems configurations. The adoption of both long- and short-route Exhaust Gas Recirculation (EGR) systems is one example of such situation, and the need to precisely measure (or estimate) mass flow rates in the various elements of the gas exchange circuit is one of the consequences.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
Journal Article

Innovative Techniques for On-Board Exhaust Gas Dynamic Properties Measurement

The purpose of this paper is to present some innovative techniques developed for an unconventional utilization of currently standard exhaust sensors, such as HEGO, UEGO, and NOx probes. In order to comply with always more stringent legislation about pollutant emissions, intake-exhaust systems are becoming even more complex and sophisticated, especially for CI engines, often including one or two UEGO sensors and a NOx sensor, and potentially equipped with both short-route and long-route EGR. Within this context, the effort to carry out novel methods for measuring the main exhaust gas dynamic properties exploiting sensors installed for different purposes, could be useful both for control applications, such as EGR rates estimation, or cost reduction, minimizing the on-board devices number. In this work, a gray-box model for measuring the gas mass flow rate, based on standard NOx sensor operating parameters of its heating circuit, is analyzed.
Technical Paper

Fuel Economy Optimization of Euro 6 Compliant Light Commercial Vehicles Equipped with SCR

The Selective Catalytic Reduction (SCR) system, installed on the exhaust line, is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for Euro 6 compliancy for light and medium duty trucks and bigger passenger cars. Moreover, new more stringent emission regulations and homologation cycles are being proposed for Euro 6c stage and they are scheduled to be applied by the end of 2017. In this context, the interest for SCR technology and its application on light-duty trucks is growing, with a special focus on its potential benefit in term of fuel consumption reduction, thanks to combustion optimization. Nevertheless, the need to warm up the exhaust gas line, to meet the required NOx conversion efficiency, remains an issue for such kind of applications.
Journal Article

Diesel Exhaust Fluid (DEF) Supply System Modelling for Control and Diagnosis Applications

The Selective Catalytic Reduction (SCR) system installed on the exhaust line is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for light and medium duty trucks, large passenger cars and off-highway vehicles, to fulfill future emission legislation. Some vehicles of these last categories, equipped with SCR, have been already put on the market, not only in the US, where the emission legislation on Diesel vehicles is more restrictive, but also in Europe, demonstrating to be already compliant with the upcoming Euro 6. Moreover, new and more stringent emission regulations and homologation cycles are being proposed all over the world, with a consequent rapidly increasing interest for this technology. As a matter of fact, a physical model of the Diesel Exhaust Fluid (DEF) supply system is very useful, not only during the product development phase, but also for the implementation of the on-board real-time controller.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Technical Paper

Development and Experimental Validation of a Control Oriented Model of SCR for Automotive Application

1 The Selective Catalytic reduction (SCR) using urea as reducing agent is currently regarded as the most promising after-treatment technology in order to comply with strict RDE targets for NOX and particulate in Diesel application. Model-based control strategies are promising to satisfy the demands of high NOX conversion efficiency and low tailpipe ammonia slip. This paper deals with the development of a control oriented model of a Cu-zeolite urea-SCR system for automotive Diesel engines. The model is intended to be used for the real-time urea-SCR management, depending on engine NOX emissions and ammonia storage. In order to ensure suitable computational demand for the on-board implementation, a reduced order one-state model of ammonia storage has been derived from a quasi-dimensional four-state model of the urea-SCR plant.
Technical Paper

Control Oriented Modeling of SCR Systems for Automotive Application

In the last decades, NOx emissions legislations for Diesel engines are becoming more stringent than ever before and the selective catalytic reduction (SCR) is considered as the most suitable technology to comply with the upcoming constraints. Model-based control strategies are promising to meet the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-selective catalytic reduction. In this paper, a control oriented model of a Cu-zeolite urea-SCR system for automotive diesel engines is presented. The model is derived from a quasi-dimensional four-state model of the urea-SCR plant. To make it suitable for the real-time urea-SCR management, a reduced order one-state model has been developed, with the aim of capturing the essential behavior of the system with a low computational burden. Particularly, the model allows estimating the NH3 slip that is fundamental not only to minimize urea consumption but also to reduce this unregulated emission.
Technical Paper

A thermodynamic Mean Value Model of the intake and exhaust system of a turbocharged engine for HiL/SiL applications.

Regarding automotive applications, Internal Combustion Engines (ICE) have become very complex plants to comply with present and future requirements in reduction of fuel consumption, pollutant emissions and performance improvement. As a consequence, the development of engine control and diagnostic system is a key aspect in the powertrain design. Mathematical models are useful tools in this direction, with applications that range from the definition of optimised management systems, to Hardware- and Software-in-the-Loop testing (HiL and SiL) and to modelbased control strategies. To this extent an original library has been developed by the authors for the simulation of last generation automotive engines. Library blocks were used to assembly a sub-model of the typical intake and exhaust system of a turbocharged engine (with VGT, intercooler, EGR circuit with cooler and throttle).
Technical Paper

A detailed Mean Value Model of the exhaust system of an automotive Diesel engine

Theoretical models are useful tools in the design of engine control systems, with applications that range from the design of engine layout, the definition of optimised management systems, to hardware-in-the-loop testing (HiL) and to model-based control strategies. To define theoretical models for control-oriented applications, an original library has been built up at the University of Parma for the simulation of the intake and exhaust systems of automotive turbocharged engines. Starting from this library, a Mean Value Model (MVM) of a Diesel engine, with variable-geometry turbocharger (VGT), EGR and throttle valve, has been developed for a small automotive application. In the paper the matching of the engine model with a detailed model of the exhaust system (developed by Magneti Marelli Powertrain) is presented.
Technical Paper

A Mean Value Model of the Exhaust System with SCR for an Automotive Diesel Engine

Nowadays requirements towards a reduction in fuel consumption and pollutant emissions of Internal Combustion Engines (ICE) keep on pushing manufacturers to improve engines performance through the enhancement of existing subsystems (e.g.: electronic fuel injection, air systems) and the introduction of specific devices (e.g.: exhaust gas recirculation systems, SCR, …). Modern systems require a combined design and application of different after-treatment devices. Mathematical models are useful tools to investigate the complexity of different system layouts, to design and to validate (HIL/SIL testing) control strategies for the after-treatment management. This study presents a mean value model of an exhaust system with SCR; it has been coupled with a common rail diesel engine combustion black box model (Neural Network based). So, dedicated models for exhaust pipes, oxidation catalyst, diesel particulate filter and selective catalytic converter are developed.