Refine Your Search

Topic

Search Results

Technical Paper

A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars

2014-04-01
2014-01-1650
In the last years the automotive industry has been involved in the development and implementation of CO2 reducing concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, waste heat recovery technologies. These latter include ThermoElectric Generator (TEG), Rankine cycle and Electric Turbo Compound (ETC) that have been practically implemented on few heavy-duty application but have not been proved yet as effective and affordable solutions for the automotive industry. The paper deals with the analysis of opportunities and challenges of the Electric Turbo Compound for automotive light-duty engines. In the ETC concept the turbine-compressor shaft is connected to an electric machine, which can work either as generator or motor. In the former case the power can satisfy the vehicle electrical demand to drive the auxiliaries or stored in the batteries.
Technical Paper

A Mean Value Model of the Exhaust System with SCR for an Automotive Diesel Engine

2009-09-13
2009-24-0131
Nowadays requirements towards a reduction in fuel consumption and pollutant emissions of Internal Combustion Engines (ICE) keep on pushing manufacturers to improve engines performance through the enhancement of existing subsystems (e.g.: electronic fuel injection, air systems) and the introduction of specific devices (e.g.: exhaust gas recirculation systems, SCR, …). Modern systems require a combined design and application of different after-treatment devices. Mathematical models are useful tools to investigate the complexity of different system layouts, to design and to validate (HIL/SIL testing) control strategies for the after-treatment management. This study presents a mean value model of an exhaust system with SCR; it has been coupled with a common rail diesel engine combustion black box model (Neural Network based). So, dedicated models for exhaust pipes, oxidation catalyst, diesel particulate filter and selective catalytic converter are developed.
Technical Paper

A thermodynamic Mean Value Model of the intake and exhaust system of a turbocharged engine for HiL/SiL applications.

2009-09-13
2009-24-0121
Regarding automotive applications, Internal Combustion Engines (ICE) have become very complex plants to comply with present and future requirements in reduction of fuel consumption, pollutant emissions and performance improvement. As a consequence, the development of engine control and diagnostic system is a key aspect in the powertrain design. Mathematical models are useful tools in this direction, with applications that range from the definition of optimised management systems, to Hardware- and Software-in-the-Loop testing (HiL and SiL) and to modelbased control strategies. To this extent an original library has been developed by the authors for the simulation of last generation automotive engines. Library blocks were used to assembly a sub-model of the typical intake and exhaust system of a turbocharged engine (with VGT, intercooler, EGR circuit with cooler and throttle).
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Technical Paper

Air-Fuel Ratio and Trapped Mass Estimation in Diesel Engines Using In-Cylinder Pressure

2017-03-28
2017-01-0593
The development of more affordable sensors together with the enhancement of computation features in current Engine Management Systems (EMS), makes the in-cylinder pressure sensing a suitable methodology for the on-board engine control and diagnosis. Since the 1960’s the in-cylinder pressure signal was employed to investigate the combustion process of the internal combustion engines for research purposes. Currently, the sensors cost reduction in addition to the need to comply with the strict emissions legislation has promoted a large-scale diffusion on production engines equipment. The in-cylinder pressure signal offers the opportunity to estimate with high dynamic response almost all the variables of interest for an effective engine combustion control even in case of non-conventional combustion processes (e.g. PCCI, HCCI, LTC).
Technical Paper

An Integrated Simulation Methodology of Thermal Management Systems for the CO2 Reduction after Engine Cold Start

2015-04-14
2015-01-0343
The emissions limits of CO2 for vehicles are becoming more stringent with the aim of reducing greenhouse gas emissions and improve fuel economy. The New European Driving Cycle (NEDC) is adopted to measure emissions for all new internal combustion engines in the European Union, and it is performed on cold vehicle, starting at a temperature of 22°C ± 2°C. Consequently, the cold-start efficiency of internal combustion engine is becoming of predominant interest. Since at cold start the lubricant oil viscosity is higher than at the target operating temperature, the consequently higher energy losses due to increased frictions can substantially affect the emission cycle results in terms of fuel consumption and CO2 emissions. A suitable thermal management system, such as an exhaust-to-oil heat exchanger, could help to raise the oil temperature more quickly.
Technical Paper

Analysis of the Effects of Injection Pressure Variation in Gasoline Partially Premixed Combustion

2021-04-06
2021-01-0517
Compression-ignited engines are still considered the most efficient and reliable technology for automotive applications. However, current and future emission regulations, which severely limit the production of NOx, particulate matter and CO2, hinder the use of diesel-like fuels. As a matter of fact, the spontaneous ignition of directly-injected Diesel leads to a combustion process that is heterogeneous by nature, therefore characterized by the simultaneous production of particulate matter and NOx. In this scenario, several innovative combustion techniques have been investigated over the past years, the goal being to benefit from the high thermal efficiency of compression-ignited engines, which results primarily from high Compression Ratio and lean and unthrottled operation, while simultaneously mitigating the amount of pollutant emissions.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
Technical Paper

Assessment of Port Water Injection Strategies to Control Knock in a GDI Engine through Multi-Cycle CFD Simulations

2017-09-04
2017-24-0034
Water injection in highly boosted gasoline direct injection (GDI) engines has become an attractive area over the last few years as a way of increasing efficiency, enhancing performance and reducing emissions. The technology and its effects are not new, but current gasoline engine trends for passenger vehicles have several motivations for adopting this technology today. Water injection enables higher compression ratios, optimal spark timing and elimination of fuel enrichment at high load, and possibly replacement of EGR. Physically, water reduces charge temperature by evaporation, dilutes combustion, and varies the specific heat ratio of the working fluid, with complex effects. Several of these mutually intertwined aspects are investigated in this paper through computational fluid dynamics (CFD) simulations, focusing on a turbo-charged GDI engine with port water injection (PWI). Different strategies for water injection timing, pressure and spray targeting are investigated.
Technical Paper

Boost Pressure Control in Transient Engine Load with Turbocharger Speed Sensing

2017-09-04
2017-24-0049
The new driving cycles require a greater focus on a wider engine operative area and especially in transient conditions where a proper air path control is a challenging task for emission and drivability. In order to achieve this goal, turbocharger speed measurement can give several benefits during boost pressure transient and for over-speed prevention, allowing the adoption of a smaller turbocharger, that can further reduce turbo-lag, also enabling engine down-speeding. So far, the use of turbocharger speed sensor was considered expensive and rarely affordable in passenger car applications, while it is used on high performance engines with the aim of maximizing engine power and torque, mainly in steady state, eroding the safe-margin for turbocharger reliability. Thanks to the availability of a new cost effective turbocharger speed technology, based on acoustic sensing, turbocharger speed measurement has become affordably also for passengers car application.
Journal Article

Combustion Indexes for Innovative Combustion Control

2017-09-04
2017-24-0079
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at combustion control improvement. Nowadays, performing an efficient combustion control is crucial for drivability improvement, efficiency increase and pollutant emissions reduction. These aspects are even more crucial when innovative combustions (such as LTC or RCCI) are performed, due to the high instability and the high sensitivity with respect to the injection parameters that are associated to this kind of combustion. Aging of all the components involved in the mixture preparation and combustion processes is another aspect particularly challenging, since not all the calibrations developed in the setup phase of a combustion control system may still be valid during engine life.
Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Model Development for Control Purposes

2007-04-16
2007-01-0383
Multi-jet injection strategies open significant opportunities for the combustion management of the modern diesel engine. Splitting up the injection process into 5 steps facilitates the proper design of the combustion phase in order to obtain the desired torque level, whilst attempting a reduction in emissions, particularly in terms of NOx. Complex 3-D models are needed in the design stage, where components such as the injector or combustion chamber shape have to be determined. Alternatively, zero-dimensional approaches are more useful when fast interpretation of experimental data is needed and an optimization of the combustion process should be obtained based on actual data. For example, zero-dimensional models allow a quick choice of optimum control settings for each engine operating condition, avoiding the need to test all the possible combinations of engine control parameters.
Technical Paper

Conceptual Design and Analytic Assessment of 48V Electric Hybrid Powertrain Architectures for Passenger Cars

2019-04-02
2019-01-0353
To meet the requirements in relation to pollutants, CO2-emissions, performances, comfort and costs for 2025 timeframe, many technology options for the powertrain, that plays a key role in the vehicle, are possible. Beside the central aspect of reducing standard cycle consumption levels and emissions, consumer demands are also growing with respect to comfort and functionality. In addition, there is also the challenge of finding cost efficient ways of integrating technologies into a broad range of vehicles with different levels of hybridization. High degrees of electrification simultaneously provide opportunities to reduce the technology content of the internal combustion engines (ICE), resulting in a cost balancing compromise between combustion engine and hybrid technology. The design and optimization of powertrain topologies, functionalities, and components require a complex development process.
Technical Paper

Development and Software in the Loop Validation of a Model-based Water Injection Combustion Controller for a GDI TC Engine

2019-04-02
2019-01-1174
Turbocharged (TC) engines work at high Indicated Mean Effective Pressure (IMEP), resulting in high in-cylinder pressures and temperatures, improving thermal efficiency, but at the same time increasing the possibility of abnormal combustion events like knock and pre-ignition. To mitigate knocking conditions, engine control systems typically apply spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Many recent studies have advocated Water Injection (WI) as an approach to replace or supplement existing knock mitigation techniques. Water reduces temperatures in the end gas zone due to its high latent heat of vaporization. Furthermore, water vapor acts as diluent in the combustion process. In this paper, the development of a novel closed-loop, model-based WI controller is discussed and critically analyzed.
Technical Paper

Development and Validation of a Methodology for Real-Time Evaluation of Cylinder by Cylinder Torque Production Non-Uniformities

2011-09-11
2011-24-0145
Modern internal combustion engine control systems require on-board evaluation of a large number of quantities, in order to perform an efficient combustion control. The importance of optimal combustion control is mainly related to the requests for pollutant emissions reduction, but it is also crucial for noise, vibrations and harshness reduction. Engine system aging can cause significant differences between each cylinder combustion process and, consequently, an increase in vibrations and pollutant emissions. Another aspect worth mentioning is that newly developed low temperature combustion strategies (such as HCCI combustion) deliver the advantage of low engine-out NOx emissions, however, they show a high cylinder-to-cylinder variation. For these reasons, non uniformity in torque produced by the cylinders in an internal combustion engine is a very important parameter to be evaluated on board.
Technical Paper

Development and Validation of a Virtual Sensor for Estimating the Maximum in-Cylinder Pressure of SI and GCI Engines

2021-09-05
2021-24-0026
This work focuses on the development and validation of a data-driven model capable of predicting the maximum in-cylinder pressure during the operation of an internal combustion engine, with the least possible computational effort. The model is based on two parameters, one that represents engine load and another one the combustion phase. Experimental data from four different gasoline engines, two turbocharged Gasoline Direct Injection Spark Ignition, a Naturally Aspirated SI and a Gasoline Compression Ignition engine, was used to calibrate and validate the model. Some of these engines were equipped with technologies such as Low-Pressure Exhaust Gas Recirculation and Water Injection or a compression ignition type of combustion in the case of the GCI engine. A vast amount of engine points were explored in order to cover as much as possible of the operating range when considering automotive applications and thus confirming the broad validity of the model.
Technical Paper

Development of a Novel Approach for Non-Intrusive Closed-Loop Heat Release Estimation in Diesel Engines

2013-04-08
2013-01-0314
Over the past years, policies affecting pollutant emissions control for Diesel engines have become more and more restrictive. In order to meet such requirements, innovative combustion control methods have currently become a key factor. Several studies demonstrate that the desired pollutant emission reduction can be achieved through a closed-loop combustion control based on in-cylinder pressure processing. Nevertheless, despite the fact that cylinder pressure sensors for on-board application have been recently developed, large scale deployment of such systems is currently hindered by unsatisfactory long term reliability and high costs. Whereas both the accuracy and the reliability of pressure measurement could be improved in future years, pressure sensors would still be a considerable part of the cost of the entire engine management system.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

2013-01-09
2013-26-0047
The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Technical Paper

Diesel Engine Acoustic Emission Analysis for Combustion Control

2012-04-16
2012-01-1338
Future regulations on pollutant emissions will impose a drastic cut on Diesel engines out-emissions. For this reason, the development of closed-loop combustion control algorithms has become a key factor in modern Diesel engine management systems. Diesel engines out-emissions can be reduced through a highly premixed combustion portion in low and medium load operating conditions. Since low-temperature premixed combustions are very sensitive to in-cylinder thermal conditions, the first aspect to be considered in newly developed Diesel engine control strategies is the control of the center of combustion. In order to achieve the target center of combustion, conventional combustion control algorithms correct the measured value varying main injection timing. A further reduction in engine-out emissions can be obtained applying an appropriate injection strategy.
Journal Article

Diesel Exhaust Fluid (DEF) Supply System Modelling for Control and Diagnosis Applications

2015-01-14
2015-26-0090
The Selective Catalytic Reduction (SCR) system installed on the exhaust line is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for light and medium duty trucks, large passenger cars and off-highway vehicles, to fulfill future emission legislation. Some vehicles of these last categories, equipped with SCR, have been already put on the market, not only in the US, where the emission legislation on Diesel vehicles is more restrictive, but also in Europe, demonstrating to be already compliant with the upcoming Euro 6. Moreover, new and more stringent emission regulations and homologation cycles are being proposed all over the world, with a consequent rapidly increasing interest for this technology. As a matter of fact, a physical model of the Diesel Exhaust Fluid (DEF) supply system is very useful, not only during the product development phase, but also for the implementation of the on-board real-time controller.
X