Refine Your Search



Search Results

Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Technical Paper

Torso Kinematics in Seated Reaches

Simulations of humans performing seated reaches require accurate descriptions of the movements of the body segments that make up the torso. Data to generate such simulations were obtained in a laboratory study using industrial, auto, and truck seats. Twelve men and women reached to push-button targets located throughout their right-hand reach envelopes as their movements were recorded using an electromagnetic tracking system. The data illustrate complex patterns of motion that depend on target location and shoulder range of motion. Pelvis motion contributes substantially to seated reach capability. On padded seats, the effective center of rotation of the pelvis is often within the seat cushion below the pelvis rather than at the hips. Lumbar spine motions differ markedly depending on the location of the target. A categorization of reach targets into four zones differentiated by torso kinematics is proposed.
Technical Paper

The Virtual Driver: Integrating Task Planning and Cognitive Simulation with Human Movement Models

Digital human modeling has traditionally focused on the physical aspects of humans and the environments in which they operate. As the field moves towards modeling dynamic and more complex tasks, cognitive and perceptual aspects of the human's performance need to be considered. Cognitive modeling of complex tasks such as driving has commonly avoided the complexity of physical simulation of the human, distilling motor performance to motion execution times. To create a more powerful and flexible approach to the modeling of human/machine interaction, we have integrated a physical architecture of human motion (the Human Motion Simulation Ergonomics Framework—HUMOSIM) with a computational cognitive architecture (the Queueing network model human processor—QN–MHP). The new system combines the features of the two separate architectures and provides new capabilities that emerge from their integration.
Technical Paper

The Tolerance of the Human Hip to Dynamic Knee Loading

Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex.
Technical Paper

The HUMOSIM Ergonomics Framework: A New Approach to Digital Human Simulation for Ergonomic Analysis

The potential of digital human modeling to improve the design of products and workspaces has been limited by the time-consuming manual manipulation of figures that is required to perform simulations. Moreover, the inaccuracies in posture and motion that result from manual procedures compromise the fidelity of the resulting analyses. This paper presents a new approach to the control of human figure models and the analysis of simulated tasks. The new methods are embodied in an algorithmic framework developed in the Human Motion Simulation (HUMOSIM) laboratory at the University of Michigan. The framework consists of an interconnected, hierarchical set of posture and motion modules that control aspects of human behavior, such as gaze or upper-extremity motion. Analysis modules, addressing issues such as shoulder stress and balance, are integrated into the framework.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

Redesigning Workstations Utilizing Motion Modification Algorithm

Workstation design is one of the most essential components of proactive ergonomics, and digital human models have gained increasing popularity in the analysis and design of current and future workstations (Chaffin 2001). Using digital human technology, it is possible to simulate interactions between humans and current or planned workstations, and conduct quantitative ergonomic analyses based on realistic human postures and motions. Motion capture has served as the primary means by which to acquire and visualize human motions in a digital environment. However, motion capture only provides motions for a specific person performing specific tasks. Albeit useful, at best this allows for the analysis of current or mocked-up workstations only. The ability to subsequently modify these motions is required to efficiently evaluate alternative design possibilities and thus improve design layouts.
Technical Paper

Predicting the Effects of Muscle Activation on Knee, Thigh, and Hip Injuries in Frontal Crashes Using a Finite-Element Model with Muscle Forces from Subject Testing and Musculoskeletal Modeling

In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking.
Technical Paper

Predicting Force-Exertion Postures from Task Variables

Accurate representation of working postures is critical for ergonomic assessments with digital human models because posture has a dominant effect on analysis outcomes. Most current digital human modeling tools require manual manipulation of the digital human to simulate force-exertion postures or rely on optimization procedures that have not been validated. Automated posture prediction based on human data would improve the accuracy and repeatability of analyses. The effects of hand force location, magnitude, and direction on whole-body posture for standing tasks were quantified in a motion-capture study of 20 men and women with widely varying body size. A statistical analysis demonstrated that postural variables critical for the assessment of body loads can be predicted from the characteristics of the worker and task.
Technical Paper

Predicting Foot Positions for Manual Materials Handling Tasks

For many industrial tasks (push, pull, lift, carry, etc.), restrictions on grip locations and visibility constrain the hand and head positions and help to define feasible postures. In contrast, foot locations are often minimally constrained and an ergonomics analyst can choose several different stances in selecting a posture to analyze. Also, because stance can be a critical determinant of a biomechanical assessment of the work posture, the lack of a valid method for placing the feet of a manikin with respect to the task compromises the accuracy of the analysis. To address this issue, foot locations and orientations were captured in a laboratory study of sagittal plane and asymmetric manual load transfers. A pilot study with four volunteers of varying anthropometry approached a load located on one of three shelves and transferred the load to one of six shelves.
Journal Article

Postural Behaviors during One-Hand Force Exertions

Posture and external loads such as hand forces have a dominant effect on ergonomic analysis outcomes. Yet, current digital human modeling tools used for proactive ergonomics analysis lack validated models for predicting postures for standing hand-force exertions. To address this need, the effects of hand magnitude and direction on whole-body posture for standing static hand-force exertion tasks were quantified in a motion-capture study of 19 men and women with widely varying body size. The objective of this work was to identify postural behaviors that might be incorporated into a posture-prediction algorithm for standing hand-force tasks. Analysis of one-handed exertions indicates that, when possible, people tend to align their bodies with the direction of force application, converting potential cross-body exertions into sagittal plane exertions. With respect to the hand-force plane, pelvis position is consistent with a postural objective of reducing rotational trunk torques.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Technical Paper

Optimizing Vehicle Occupant Packaging

Occupant packaging practice relies on statistical models codified in SAE practices, such as the SAE J941 eyellipse, and virtual human figure models representing individual occupants. The current packaging approach provides good solutions when the problem is relatively unconstrained, but achieving good results when many constraints are active, such as restricted headroom and sightlines, requires a more rigorous approach. Modeling driver needs using continuous models that retain the residual variance associated with performance and preference allows use of optimization methodologies developed for robust design. Together, these models and methods facilitate the consideration of multiple factors simultaneously and tradeoff studies can be performed. A case study involving the layout of the interior of a passenger car is presented, focusing on simultaneous placement of the seat and steering wheel adjustment ranges.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

New Concepts in Vehicle Interior Design Using ASPECT

The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program developed a new physical manikin for seat measurement and new techniques for integrating the seat measurements into the vehicle design process. This paper presents an overview of new concepts in vehicle interior design that have resulted from the ASPECT program and other studies of vehicle occupant posture and position conducted at UMTRI. The new methods result from an integration of revised versions of the SAE seat position and eyellipse models with the new tools developed in ASPECT. Measures of seat and vehicle interior geometry are input to statistical posture and position prediction tools that can be applied to any specified user population or individual occupant anthropometry.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.