Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Technical Paper

mDSF: Improved Fuel Efficiency, Drivability and Vibrations via Dynamic Skip Fire and Miller Cycle Synergies

2019-04-02
2019-01-0227
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states: high-charge fire, low-charge fire, and skip (deactivation). The low-charge fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, high-charge firing mode.
Technical Paper

Smart Cylinder Deactivation Strategies to Improve Fuel Economy and Pollutant Emissions for Diesel-Powered Applications

2019-09-09
2019-24-0055
Further improvement of the trade-off between CO2 and pollutant emissions is the main motivating factor for the development of new diesel engine concepts, from light-duty car applications via medium-duty commercial vehicles up to large long-haul trucks. The deactivation of one or more cylinders of a light-duty diesel engine during low load operation can be a sophisticated method to improve fuel economy and reduce especially NOx emissions at the same time. Dynamic Skip Fire (DSF) is an advanced cylinder deactivation technology, where the decision to fire or skip singular units of a multi-cylinder engine architecture is taken just prior to each firing opportunity, based on a balanced rankling of multiple input parameters.
Technical Paper

Port Injection of Water into a DI Hydrogen Engine

2015-04-14
2015-01-0861
Hydrogen fueled internal combustion engines have potential for high thermal efficiencies; however, high efficiency conditions can produce high nitrogen oxide emissions (NOx) that are challenging to treat using conventional 3-way catalysts. This work presents the results of an experimental study to reduce NOx emissions while retaining high thermal efficiencies in a single-cylinder research engine fueled with hydrogen. Specifically, the effects on engine performance of the injection of water into the intake air charge were explored. The hydrogen fuel was injected into the cylinder directly. Several parameters were varied during the study, including the amount of water injected into the intake charge, the amount of fuel injected, the phasing of the fuel injection, the number of fuel injection events, and the ignition timing. The results were compared with expectations for a conventionally operated hydrogen engine where load was controlled through changes in equivalence ratio.
Technical Paper

Modeling and Simulation of Airflow Dynamics in a Dynamic Skip Fire Engine

2015-04-14
2015-01-1717
Dynamic skip fire is a control method for internal combustion engines in which engine cylinders are selectively fired or skipped to meet driver torque demand. In this type of engine operation, fueling, and possibly intake and exhaust valves of each cylinder are actuated on an individual firing opportunity basis. The ability to operate each cylinder at or near its best thermal efficiency, and to achieve flexible control of acoustic and vibrational excitations has been described in previous publications. Due to intermittent induction and exhaust events, air induction and torque production in a DSF engine can vary more than conventional engines on a cycle-to-cycle basis. This paper describes engine thermofluid modeling for this type of operation for purposes of air flow and torque prediction.
Journal Article

Method to Compensate Fueling for Individual Firing Events in a Four-Cylinder Engine Operated with Dynamic Skip Fire

2018-04-03
2018-01-1162
Cylinder deactivation in multicylinder spark-ignition (SI) engines leads to increased fuel efficiency at part load by allowing fired cylinders to operate closer to their peak thermal efficiency compared to all-cylinder operation. Unlike traditional cylinder deactivation strategies that are limited to deactivating only certain cylinders, Dynamic Skip Fire (DSF) is an advanced cylinder deactivation control strategy that makes deactivation decisions for every cylinder on an individual firing opportunity basis to best meet driver torque demand while saving fuel and mitigating noise, vibration, and harshness (NVH). During DSF operation, inducted charge air mass can vary for each firing event due to the firing sequence history. To maximize efficiency, cylinder fueling should be adjusted for each firing event in DSF based on the inducted charge air mass for that event.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Technical Paper

Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition Engines

2016-04-05
2016-01-0672
Pumping losses are one of the primary energy losses in throttled spark ignition engines. In order to reduce fuel consumption, engine manufacturers are incorporating devices that deactivate the valve-train in some cylinders. In the operating strategies currently implemented in the market, fixed sets of cylinders are deactivated, allowing 2 or 3 operating modes. In contrast, Tula Technology has developed Dynamic Skip Fire (DSF), in which the decision of whether or not to fire a cylinder is decided on a cycle-by-cycle basis. Testing the DSF technology in an independent certified lab on a 2010 GMC Denali, reduces the fuel consumption by 18% on a cycle-average basis, and simultaneously increases the ability to mitigate noise and vibration at objectionable frequencies.
Journal Article

Fast Catalyst Light-Off with Dynamic Skip Fire

2020-04-14
2020-01-0313
Catalytic aftertreatment is commonly used to reduce regulated gas emissions from Internal Combustion (IC) engines. Achieving fast catalyst light-off has always been a challenge for automobile IC engine applications. This paper experimentally studied the thermal management and regulated gas emissions from a Spark Ignition (SI) engine with Dynamic Skip Fire (DSF®) technology during cold start period. The study has found that DSF can increase exhaust gas temperature at the catalyst inlet by up to 100°C, and the exhaust enthalpy by up to 20%. Cold start tailpipe carbon monoxide (CO) and hydrocarbon (HC) emissions can be reduced by 10% to 20% largely due to the increased exhaust gas temperature and enthalpy. Dynamic air pumping can further increase exhaust gas temperature by 30 °C, and can nearly double enthalpy delivered to the catalyst, which reduces cold start HC emissions by more than 50%.
Technical Paper

Evaluation of New High Efficiency Engine Concept with Atkinson Cycle, Cooled EGR and Dynamic Skip Fire

2021-04-06
2021-01-0459
Dynamic Skip Fire (DSF) is a proven cylinder deactivation strategy developed at Tula Technology that, in production, has proven to deliver significant fuel consumption improvements across engine and vehicle platforms. DSF allows cylinders to operate near optimal efficiency by reducing pumping losses and improving combustion stability. The Atkinson cycle is also a well-known strategy to improve thermodynamic efficiency by reducing pumping losses and over-expanding combustion gases. This strategy is commonly implemented with long duration intake cams and late intake valve closing. The Atkinson cycle sacrifices power density in a naturally aspirated engine so displacement is commonly increased. The upsized Atkinson cycle engine still shows significant reduction in fuel consumption at high load but has a fuel consumption penalty at low loads due to increased friction and throttling losses.
Technical Paper

Electrified Dynamic Skip Fire (eDSF): Design and Benefits

2018-04-03
2018-01-0864
Tula’s Dynamic Skip Fire (DSF®) technology combines highly responsive torque control with cylinder deactivation to optimize fuel consumption of spark ignited engines. Through careful control of individual combustion events, engine operation occurs at peak efficiency over the full range of torque demand. A challenge with skip-fire operation is avoiding objectionable noise and vibration. Tula’s DSF technology uses sophisticated firing control algorithms which manage the skip-fire sequence to avoid excitation of the powertrain and vehicle at sensitive frequencies. DSF enables a production-quality driving experience while reducing CO2 emissions by 8-15% with no impact on regulated toxic emissions. Moreover, DSF presents a high value solution for meeting global emissions mandates, with estimated cost less than $40 per percent gain in fuel efficiency.
Technical Paper

Efficiency Improvement of Electric Motor Drives Using Dynamic Motor Drive Technology

2022-03-29
2022-01-0721
Tula Technology has developed a novel, patented motor control strategy called Dynamic Motor Drive (DMD®), which reduces the light-load losses of electric motor drives by intermittently pulsing motor torque. Since passenger vehicles frequently operate at light loads, DMD can significantly reduce the energy consumption of electric vehicles, extending their range. DMD is particularly beneficial for rare-earth-free or reduced-rare-earth permanent magnet (PM)-based electric motor drives, and can help make these less expensive, more environmentally friendly motors range-competitive with traditional PM motors. This paper details the efficiency improvement when DMD is applied to a rare-earth-free synchronous reluctance motor (SynRM). We present recent experimental results to show the loss reduction by DMD in a prototype 8-kW three-phase SynRM, and compare them to simulation results.
Technical Paper

Dynamic Skip Fire Applied to a Diesel Engine for Improved Fuel Consumption and Emissions

2019-04-02
2019-01-0549
Dynamic skip fire (DSF) is an advanced cylinder deactivation technology where the decision to fire or skip a singular cylinder of a multi-cylinder engine is made immediately prior to each firing opportunity. A DSF-equipped engine features the ability to selectively deactivate cylinders on a cylinder event-by-event basis in order to match the requested torque demand at optimum fuel efficiency while maintaining acceptable noise, vibration and harshness (NVH). Dynamic Skip Fire (DSF) has already shown significant fuel economy improvements for throttled spark-ignition engines. This paper explores the potential benefits of DSF technology in improving fuel economy while maintaining ultra-low tailpipe emissions for light-duty (LD) Diesel powertrains.
Technical Paper

Direct In-cylinder Injection of Water into a PI Hydrogen Engine

2013-04-08
2013-01-0227
Injecting liquid water into a fuel/air charge is a means to reduce NOx emissions. Such strategies are particularly important to hydrogen internal combustion engines, as engine performance (e.g., maximum load) can be limited by regulatory limits on NOx. Experiments were conducted in this study to quantify the effects of direct injection of water into the combustion chamber of a port-fueled, hydrogen IC engine. The effects of DI water injection on NOx emissions, load, and engine efficiency were determined for a broad range of water injection timing. The amount of water injected was varied, and the results were compared with baseline data where no water injection was used. Water injection was a very effective means to reduce NOx emissions. Direct injection of water into the cylinder reduced NOx emissions by 95% with an 8% fuel consumption penalty, and NOx emissions were reduced by 85% without any fuel consumption penalty.
Journal Article

Controls and Hardware Development of Multi-Level Miller Cycle Dynamic Skip Fire (mDSF) Technology

2021-04-06
2021-01-0446
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states designated as: High Fire, Low Fire, and Skip (deactivation). The Low Fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, High Fire mode. mDSF can be implemented cost-effectively using an asymmetric intake valve lift strategy, with one high-flow power charging port and one high-efficiency Miller port.
Technical Paper

Challenges in Developing Hydrogen Direct Injection Technology for Internal Combustion Engines

2008-10-06
2008-01-2379
Development status and insight on a “research level” piezoelectric direct injection fuel injection system for prototype hydrogen Internal Combustion Engines (ICEs) is described. Practical experience accumulated from specialized material testing, bench testing and engine operation have helped steer research efforts on the fuel injection system. Recent results from a single cylinder engine are also presented, including demonstration of 45% peak brake thermal efficiency. Developing ICEs to utilize hydrogen can result in cost effective power plants that can potentially serve the needs of a long term hydrogen roadmap. Hydrogen direct injection provides many benefits including improved volumetric efficiency, robust combustion (avoidance of pre-ignition and backfire) and significant power density advantages relative to port-injected approaches with hydrogen ICEs.
X