Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Virtual Optimization of Race Engines Through an Extended Quasi Steady State Lap Time Simulation Approach

2018-04-03
2018-01-0587
Minimizing the lap time for a given race track is the main target in racecar development. In order to achieve the highest possible performance of the vehicle configuration the mutual interaction at the level of assemblies and components requires a balance between the advantages and disadvantages for each design decision. Especially the major shift in the focus of racecar powerunit development to high efficiency powertrains is driving a development of lean boosted and rightsized engines. In terms of dynamic engine behavior the time delay from requested to provided torque could influence the lap time performance. Therefore, solely maximizing the full load behavior objective is insufficient to achieve minimal lap time. By means of continuous predictive virtual methods throughout the whole development process, the influence on lap time by dynamic power lags, e.g. caused by the boost system, can be recognized efficiently even in the early concept phase.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Journal Article

Virtual Full Engine Development: 3D-CFD Simulations of Turbocharged Engines under Transient Load Conditions

2018-04-03
2018-01-0170
The simulation of transient engine behavior has gained importance mainly due to stringent emission limits, measured under real driving conditions and the concurrently demanded vehicle performance. This is especially true for turbocharged engines, as the coupling of the combustion engine and the turbocharger forms a complex system in which the components influence each other remarkably causing, for example, the well-known turbo lag. Because of this strong interaction, during a transient load case, the components should not be analyzed separately since they mutually determine their boundary conditions. Three-dimensional computational fluid dynamics (3D-CFD) simulations of full engines in stationary operating points have become practicable several years ago and will remain a valuable tool in virtual engine development; however, the next logical step is to extend this approach into the transient domain.
Technical Paper

Valve Flow Coefficients under Engine Operation Conditions: Pressure Ratios, Pressure and Temperature Levels

2019-01-15
2019-01-0041
Engine valve flow coefficients are not only used to characterize the performance of valve/port designs, but also for modelling gas exchange in 0D/1D engine simulation. Flow coefficients are usually estimated with small pressure ratios and at ambient air conditions. In contrast, the ranges for pressure ratio, pressure and temperature level during engine operation are much more extensive. In this work the influences of these three parameters on SI engine poppet valve flow coefficients are investigated using 3D CFD and measurements for validation. While former investigations already showed some pressure ratio dependencies by measurement, here the use of 3D CFD allows a more comprehensive analysis and a deeper understanding of the relevant effects. At first, typical ranges for the three mentioned parameters during engine operation are presented.
Technical Paper

Valve Flow Coefficients under Engine Operation Conditions: Piston Influence and Flow Pulsation

2019-09-09
2019-24-0003
Engine valve flow coefficients are used to describe the flow throughput performance of engine valve/port designs, and to model gas exchange in 0D/1D engine simulation. Valve flow coefficients are normally determined at a stationary flow test bench, separately for intake and exhaust side, in the absence of the piston. However, engine operation differs from this setup; i. a. the piston might interact with valve flow around scavenging top dead center, and instead of steady boundary conditions, valve flow is nearly always subjected to pressure pulsations, due to pressure wave reflections within the gas exchange ports. In this work the influences of piston position and flow pulsation on valve flow coefficients are investigated for different SI engine geometries by means of 3D CFD and measurements at an enhanced flow test bench.
Technical Paper

Validity of a Steady-State Friction Model for Determining CO2 Emissions in Transient Driving Cycles

2019-09-09
2019-24-0054
Due to its high benefit-cost ratio, decreasing mechanical friction losses in internal combustion engines represents one of the most effective and widely applicable solutions for improved engine efficiency. Especially the piston group - consisting of piston, rings and pin - shows significant potential for friction reduction, which can be evaluated through extensive experimental parameter studies. For each investigated variant, the steady-state friction measurements are fitted to an empirical polynomial model. In order to calculate the associated fuel consumption and CO2 emissions in transient driving cycles, the steady-state friction model is used in a map-based vehicle simulation. If transient engine operation entails friction phenomena that are not included in the steady-state model, the simulation could yield erroneous fuel consumption and CO2 predictions.
Journal Article

Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock

2017-09-04
2017-24-0001
The most significant operation limit prohibiting the further reduction of the CO2 emissions of gasoline engines is the occurrence of knock. Thus, being able to predict the incidence of this phenomenon is of vital importance for the engine process simulation - a tool widely used in the engine development. Common knock models in the 0D/1D simulation are based on the calculation of a pre-reaction state of the unburnt mixture (also called knock integral), which is a simplified approach for modeling the progress of the chemical reactions in the end gas where knock occurs. Simulations of thousands of knocking single working cycles with a model representing the Entrainment model’s unburnt zone were performed using a detailed chemical reaction mechanism. The investigations showed that, at specific boundary conditions, the auto-ignition of the unburnt mixture resulting in knock happens in two stages.
Technical Paper

Transient Simulation of Nitrogen Oxide Emissions of CI Engines

2016-04-05
2016-01-1002
This paper presents a quasi-dimensional emission model for calculating the transient nitric oxide emissions of a diesel engine. Using conventional and high-speed measurement technology, steady-state and transient emissions of a V6 diesel engine were examined. Based on measured load steps and steady-state measurements a direct influence of the combustion chamber wall temperature on the nitric oxide emissions was found. Load steps to and from, as well as steady-state measurements down to almost stoichiometric global combustion air ratios were used to examine the behavior of nitric oxide formation under these operating conditions. An existing emission model was expanded in order to represent the direct influence of the combustion chamber wall temperature on the nitric oxide emissions as well as enabling the forecasting of nitric oxide emissions at low global combustion air ratios: Both particularly important aspects for the simulation of transient emissions.
Technical Paper

Three-Dimensional Simulation of the Piston Group

2000-03-06
2000-01-1239
For basic research on the piston group a new simulation technique is developed using the contact algorithm of a commercial FE-code (MARC). Several improvements were made in order to adapt the MARC solver to the problem of sliding and dynamic contact. The first computations, a real transient analysis simulating the piston group, of both a two-stroke engine and a modern direct injected four-stroke Diesel engine for passenger cars, show that the new method is able to calculate the movements, velocities and accelerations of the piston. The quality of the results is mainly influenced by the hydrodynamic effects.
Journal Article

The Development of an Highly Modular Designed Zero-Dimensional Engine Process Calculation Code

2010-04-12
2010-01-0149
The main objective of the FVV-project “Cylinder Module” was the development of a profoundly modular designed concept for object-oriented modeling of in-cylinder processes of internal combustion engines. It was designed in such a way, that it can either be used as a stand-alone real working-process calculation tool or in tools for whole vehicle simulations. It is possible to run the “Cylinder Module”-code inside the FVV-“GPA”-software for transient vehicle and driving cycle simulations and it is possible to use the graphical user interface “ATMOS” of the “GPA”-project. The code can also be used as a user-subroutine in 1-D-flow simulation codes. Much effort was spent on the requirements of flexibility and expandability in order to be well prepared to cope with the diversity of both today's and future tasks. The code is freely available for members of the German Research Association for Combustion Engines (FVV).
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

Simulation of the Post-Oxidation in Turbo Charged SI-DI-Engines

2011-04-12
2011-01-0373
Turbocharged SI-DI-engines in combination with a reduction of engine displacement (“Downsizing”) offer the possibility to remarkably reduce the overall fuel consumption. In charged mode it is possible to scavenge fresh unburnt air into the exhaust system if a positive slope during the overlap phase of the gas exchange occurs. The matching of the turbo system in SI-engines always causes a trade-off between low-end torque and high power output. The higher mass flow at low engine speeds of an engine using scavenging allows a partial solution of this trade-off. Thus, higher downsizing grades and fuel consumption reduction potential can be obtained. Through scavenging the global fuel to air ratio deviates from the local in-cylinder fuel to air ratio. It is possible to use a rich in-cylinder fuel to air ratio, whereas the global fuel to air ratio remains stochiometrical. This could be very beneficial to reduce the effect of catalytic aging on the one hand and engine knock on the other hand.
Technical Paper

Simulation of Autoignition, Knock and Combustion for Methane-Based Fuels

2017-10-08
2017-01-2186
Engine Knock is a stochastic phenomenon that occurs during the regular combustion of spark ignition (SI) engines and limits its efficiency. Knock is triggered by an autoignition of local “hot spots” in the unburned zone, ahead of the flame front. Regarding chemical kinetics, the temperature and pressure history as well as the knock resistance of the fuel are the main driver for the autoignition process. In this paper, a new knock modeling approach for natural gas blends is presented. It is based on a kinetic fit for the ignition delay times that has been derived from chemical kinetics simulations. The knock model is coupled with an enhanced burn rate model that was modified for Methane-based fuels. The two newly developed models are incorporated in a predictive 0D/1D simulation tool that provides a cost-effective method for the development of natural gas powered SI engines.
Technical Paper

Resonance Charging Applied to a Turbo Charged Gasoline Engine for Transient Behavior Enhancement at Low Engine Speed

2017-09-04
2017-24-0146
Upcoming regulations and new technologies are challenging the internal combustion engine and increasing the pressure on car manufacturers to further reduce powertrain emissions. Indeed, RDE pushes engineering to keep low emissions not only at the bottom left of the engine map, but in the complete range of load and engine speeds. This means for gasoline engines that the strategy used to increase the low end torque and power by moving out of lambda one conditions is no longer sustainable. For instance scavenging, which helps to increase the enthalpy of the turbine at low engine speed cannot be applied and thus leads to a reduction in low-end torque. Similarly, enrichment to keep the exhaust temperature sustainable in the exhaust tract components cannot be applied any more. The proposed study aims to provide a solution to keep the low end torque while maintaining lambda at 1. The tuning of the air intake system helps to improve the volumetric efficiency using resonance charging effects.
Technical Paper

Reaction Kinetics Calculations and Modeling of the Laminar Flame Speeds of Gasoline Fuels

2018-04-03
2018-01-0857
In the quasi-dimensional modeling of the spark-ignition combustion process, the burn rate calculation depends, among other influences, on the laminar flame speed. Commonly used models of laminar flame speeds are usually developed on the basis of measurement data limited to boundary conditions outside of the engine operation range. This limitation is caused by flame instabilities and forces flame speed models to be extrapolated for the application in combustion process simulation. However, for the investigation of, for example, lean burn engine concepts, reliable flame speed values are needed to improve the quality and predictive ability of burn rate models. For this purpose, a reference fuel for gasoline is defined to perform reaction kinetics calculations of laminar flame speeds for a wide range of boundary conditions.
Technical Paper

Quasi-dimensional and Empirical Modeling of Compression-Ignition Engine Combustion and Emissions

2010-04-12
2010-01-0151
Two combustion models are presented: A quasi-dimensional approach, based on the injection shape and an empirical model. Both models have computation times of less than one second per cycle. The quasi-dimensional approach for CI combustion discretizes the injection jet in slices. Pilot-injections are modeled as separate zones. The forecast capability and the limitations of the model are discussed on the basis of measurements. Mentioned above the base of the quasi-dimensional model is the injection rate. Often it is difficult to obtain these data. There is therefore another empirical approach for combustion, which does not need the injection rate as input. Both models have to be calibrated. This can be done by an automatic calibration tool on the basis of the advanced Powell method. The differences and advantages compared with other optimization methods are shown. Emission-simulation models are highly important in simulating CI engines.
Journal Article

Quasi-Dimensional Modeling of CI-Combustion with Multiple Pilot- and Post Injections

2010-04-12
2010-01-0150
A new phenomenological CI combustion model was developed. Within this model the given injection rate may contain an arbitrary number of injections during one cycle. Another target was a short computation time of one second per cycle on average. The new approach should also have the ability to simulate a wide engine spectrum from passenger-car engines through to marine engines. The ignition delay is calculated separately for each single injection. In this way the model depicts the influence of pilot injections on the ignition delay of proximate injections. Each pilot injection is modeled as a single air-fuel mixture cloud with air entrainment. The burn rate of the pilot injection is modeled as a function of flame propagation and of the current local excess air ratio. If the local excess air ratio becomes too lean the pilot combustion stops or does not start at all. Main and post-injections are calculated by means of a slice approach.
Technical Paper

Presenting a Fourier-Based Air Path Model for Real-Time Capable Engine Simulation Enhanced by a Semi-Physical NO-Emission Model with a High Degree of Predictability

2016-10-17
2016-01-2231
Longitudinal models are used to evaluate different vehicle-engine concepts with respect to driving behavior and emissions. The engine is generally map-based. An explicit calculation of both fluid dynamics inside the engine air path and cylinder combustion is not considered due to long computing times. Particularly for dynamic certification cycles (WLTC, US06 etc.), dynamic engine effects severely influence the quality of results. Hence, an evaluation of transient engine behavior with map-based engine models is restricted to a certain extent. The coupling of detailed 1D-engine models is an alternative, which rapidly increases the model computation time to approximately 300 times higher than that of real time. In many technical areas, the Fourier transformation (FT) method is applied, which makes it possible to represent superimposed oscillations by their sinusoidal harmonic oscillations of different orders.
X