Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Study on Wall Pore Structure for Next Generation Diesel Particulate Filter

2008-04-14
2008-01-0618
A wall flow diesel particulate filter (DPF) having a novel wall pore structure design for reducing backpressure, increasing robustness, and increasing filtration efficiency is presented. The filter offers a linear relationship between soot loading and backpressure, offering greater accuracy in estimating the amount of soot loading from backpressure. Basic experiments were performed on small plate test pieces having various pore structure designs. Soot generated by a Cast-2F propane burner having a controlled size distribution was used. Cold flow test equipment that was carefully designed for flow distribution and soot/air mixing was used for precise measurement of backpressure during soot loading. The upstream and downstream PM numbers were counted by Scanning Mobility Particle Sizer (SMPS) to determine soot concentration in the gas flow and filtration efficiency of the test pieces. Microscope observations of the soot trapped in the wall were also carried out.
Technical Paper

Study of Ceramic Catalyst Optimization for Emission Purification Efficiency

1994-03-01
940784
In this study, to satisfy increasingly strict emission regulations, the conversion efficiency of a 0.11 mm (4 mil) thin-wall catalyst is discussed. The effects of catalyst bulk density on reducing heat mass to improve catalyst emission conversion in the early cold transient mode (Bag 1 in the FTP-75 mode) is quantitatively discussed. To analyze the effects of low heat mass, catalyst's bed temperatures were measured. Effects of the geometric surface area (GSA) and volume of the catalyst were also analyzed. An early feedback control system with an HEGO oxygen sensor and a secondary air injection control system with an original oxygen sensor were compared with an original control system on THC, CO, and NOx emission amounts.
Technical Paper

Prediction of Catalytic Performance for Ultra Thin Wall and High Cell Density Substrates

2000-03-06
2000-01-0494
New ultra-low vehicle emission legislation requires advanced catalyst systems to achieve high conversion requirements. Manufacturers have to improve both the washcoat formulations and the catalyst substrate technology to meet these new regulations. This paper will present the results of a computer modeling study on the effects of ultra-thinwall catalysts on hydrocarbon and carbon monoxide light-off performance improvement. The experimental data from catalyst light-off testing on an engine dynamometer are compared with theoretical results of advanced substrate modeling for ultra-thin wall ceramic substrates. Results show that thermal mass has the greatest effect on light-off performance. Decreases in wall thickness offer the greatest benefit to light-off performance by lowering the thermal mass of the substrate, thus allowing it to reach light-off temperature faster.
Technical Paper

Prediction of Catalytic Performance during Light-off Phase with Different Wall Thickness, Cell Density and Cell Shape

2001-03-05
2001-01-0930
Further stringent emission legislation requires advanced technologies, such as sophisticated engine management and advanced catalyst and substrate to achieve high catalytic performance, especially during the light-off phase. This paper presents the results of calculations and measurements of hydrocarbon and carbon monoxide light-off performance for substrates of different wall thickness, cell density and cell shapes. The experimental data from catalyst light-off testing on an engine dynamometer are compared with theoretical results of computer modeling under different temperature ramps and flow rates. The reaction kinetics in the computer modeling are derived from the best fit for the performance of conventional ceramic substrate (6mil/400cpsi), by comparing the theoretical and experimental results on both HC and CO emissions. The calibrated computer model predicts the effects of different wall thickness, cell density and cell shape.
Technical Paper

Potential of a Low Pressure Drop Filter Concept for Direct Injection Gasoline Engines to Reduce Particulate Number Emission

2012-04-16
2012-01-1241
The automotive industry is currently evaluating the gasoline particulate filter (GPF) as a potential technology to reduce particulate emissions from gasoline direct injection (GDI) engines. In this paper, several GPF design measures which were taken to obtain a filter with lower pressure drop when compared to our previous concept will be presented. Based on engine test bench and vehicle test results, it was determined some soot will accumulate on the GPF walls, resulting in an increase in pressure drop. However, the accumulated soot will be combusted under high temperature and high O₂ concentration conditions. In a typical vehicle application, passive regeneration will likely occur and a cycle of soot accumulation and combustion might be repeated in the actual driving conditions.
Technical Paper

Performance of Next Generation Gasoline Particulate Filter Materials under RDE Conditions

2019-04-02
2019-01-0980
In order to meet the challenging CO2 targets beyond 2020 without sacrificing performance, Gasoline Direct Injection (GDI) technology, in combination with turbo charging technology, is expanding in the automotive industry. However, while this technology does provide a significant CO2 reduction, one side effect is increased Particle Number (PN) emission. As a result, from September 2017, GDI vehicles in Europe are required to meet the stringent PN emission limits of 6x1011 #/km under the Worldwide harmonized Light vehicles Test Procedure (WLTP). In addition, it is required to meet PN emission of 9x1011 #/km under Real Driving Emission (RDE) testing, which includes a Conformity Factor (CF) of 1.5 to account for current measurement inaccuracies on the road. This introduction of RDE testing in Europe and China will especially provide a unique challenge for the design of exhaust after-treatment systems due to its wide boundary conditions.
Technical Paper

Performance Verification of Next Generation Diesel Particulate Filter

2010-04-12
2010-01-0531
The Inlet-Membrane DPF which has a small pore size membrane formed on the inlet side of the body wall has been developed as a next generation diesel particulate filter (DPF). It simultaneously realizes low pressure drop, small pressure drop hysteresis, high robustness and high filtration efficiency. The low pressure drop improves fuel economy. The small pressure drop hysteresis has the potential to extend the regeneration interval since the linear relationship between the pressure drop and accumulated soot mass improves the accuracy of the soot mass detection by means of the pressure drop values. The Inlet-Membrane DPF's high robustness also extends the regeneration interval resulting in improved fuel economy and a lower risk of oil dilution while its high filtration efficiency reduces PM emissions. The concept of the Inlet-Membrane DPF was confirmed using disc type filters in 2008 and its performances was evaluated using full block samples in 2009.
Technical Paper

Particle Number Emission Reduction for GDI Engines with Gasoline Particulate Filters

2017-10-08
2017-01-2378
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit in EU of 6x10 sup 12 #/km, which will be further reduced by one order of magnitude to 6x10 sup 11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
Technical Paper

New Particulate Filter Concept to Reduce Particle Number Emissions

2011-04-12
2011-01-0814
Gasoline Direct Injection (GDI) engines achieve better fuel economy but have the drawback of increased Particulate Matter (PM) emissions. As known from diesel engine applications particulate filters are an effective PM reduction device which is expected to be effective for reduction of particulates emitted by GDI engines as well. For this investigation new filter concepts especially designed for GDI applications are proposed. Filtration efficiency, pressure drop and regeneration performance were verified by cold flow bench and engine and chassis dynamometer testing. The experimental data were used to discuss the validity of these new filter design concepts.
Journal Article

New Design Concept for Diesel Particulate Filter

2011-04-12
2011-01-0603
The Inlet-Membrane DPF, which has a small pore size membrane formed on the inlet side of the body wall, has been developed as a next generation diesel particulate filter (DPF). It simultaneously achieves low pressure drop, small pressure drop hysteresis, high robustness, and high filtration efficiency. Low pressure drop improves fuel economy. Small pressure drop hysteresis has the potential to extend the regeneration interval since the linear relationship between pressure drop and accumulated soot mass improves the accuracy of soot mass detection by means of the pressure drop values. The Inlet-membrane DPF's high robustness also extends the regeneration interval resulting in improved fuel economy and a lower risk of oil dilution while its high filtration efficiency reduces PM emissions. The concept of the Inlet-Membrane DPF was confirmed using disc type filters in 2008 and its performance was evaluated using full block samples in 2009.
Technical Paper

Influence of Cell Shape Between Square and Hexagonal Cells

2003-03-03
2003-01-0661
Developing ultra thin wall ceramic substrates is necessary to meet stricter emissions regulations, in part because substrate cell walls need to be thinner in order to improve warm-up and light-off characteristics and lower exhaust system backpressure. However, the thinner the cell wall becomes, the poorer the mechanical and thermal characteristics of the substrate. Furthermore, the conditions under which the ultra thin wall substrates are used are becoming more severe. Therefore both the mechanical and thermal characteristics are becoming important parameters in the design of advanced converter systems. Whereas square cells are used world-wide in conjunction with oxidation and/or three-way catalysts, hexagonal cells, with features promoting a homogeneous catalyst coating layer, have found limited use as a NOx absorber due to its enhanced sulfur desorption capability.
Technical Paper

High Porosity DPF Design for Integrated SCR Functions

2012-04-16
2012-01-0843
Diesel engines are more fuel efficient due to their high thermal efficiency, compared to gasoline engines and therefore, have a higher potential to reduce CO2 emissions. Since diesel engines emit higher amounts of Particulate Matter (PM), DPF systems have been introduced. Today, DPF systems have become a standard technology. Nevertheless, with more stringent NOx emission limits and CO2 targets, additional NOx emission control is needed. For high NOx conversion efficiency, SCR catalysts technology shows high potential. Due to higher temperature at the close coupled position and space restrictions, an integrated SCR concept on the DPFs is preferred. A high SCR catalyst loading will be required to have high conversion efficiency over a wide range of engine operations which causes high pressure for conventional DPF materials.
Technical Paper

Effects of DPF Volume on Thermal Shock Failures during Regeneration

1989-02-01
890173
Application of ceramic honeycomb wall-flow type diesel particulate filters (DPF) to heavy duty vehicles requires a large volume filter. Heavy duty vehicles produce a large volume exhaust gas, and pressure drop in the exhaust system must be maintained to a certain level. In addition, the filters must be designed to resist fracture from thermal stresses during regeneration. This is particularly important in heavy duty vehicles because of these extended mileage requirements. These studies of the effects of DPF volume on thermal shock resistance during regeneration reveal that the maximum failure temperatures are lower as DPF volume is increased, still maintaining 950°C maximum temperature with 12 ℓ volume and 9″D × 12″L size large DPF. Some thermal stress analyses with temperature profiles and finite element analysis were conducted on four different volume DPF during regeneration.
Technical Paper

Development of Improved SCRonDPF Design for Future Tighter Regulations and Reduced System Packaging

2018-04-03
2018-01-0344
With the push towards more stringent on-road US heavy duty diesel regulations (i.e. HD GHG Phase 2 and the proposed ARB 20 mg/bhp-hr NOx), emission system packaging has grown critical while improving fuel economy and NOx emissions. The ARB regulations are expected to be implemented post 2023 while regulation for EU off-road segment will begin from 2019. The regulation, called Stage V, will introduce particle number (PN) regulation requiring EU OEMs to introduce a diesel particulate filter (DPF) while customer demands will require the OEMs to maintain current emission system packaging. A viable market solution to meet these requirements, especially for EU Stage V being implemented first, is a DPF coated with a selective catalyst reduction (SCR) washcoat (i.e. SCRonDPF).
Technical Paper

Analyses of Thermal Shock Failure on Large Volume DPF

1990-02-01
900113
Ceramic honeycomb wall flow diesel particulate filters (DPF) have been investigated for use in exhaust gas control of diesel vehicles. However, before they can be used, prevention of thermal shock failure during combustion regeneration is necessary. Studies were conducted on thermal shock failures on 9-inch diameter large volume DPF during regeneration by finite element analyses (FEA). These studies reveal that, within safe limits, maximum thermal stress is almost constant even at different gas flow rates and oxygen concentrations. Regeneration tests were also conducted on large volume DPF of several materials having different pore size distributions. FEA thermal stress was compared with mechanical strength of the material at safe levels.
Technical Paper

Advanced Ceramic Wall Flow Filter for Reduction of Particulate Number Emission of Direct Injection Gasoline Engines

2013-04-08
2013-01-0836
Low fuel consumption and improved power output are the main market drivers in the automotive industry. For these challenges, Gasoline Direct Injection (GDI) technology provides higher thermal efficiency than Multi Point Injection (MPI) engines and this technology is expanding as a solution to reduce CO₂ and improve driveability. In Europe under the Euro 5 regulation, engine downsizing becomes a major solution to reduce CO₂ of gasoline engines. For this concept GDI is essential together with turbocharging technology. However GDI technology increases particulate matter (PM) emissions compared to MPI engines. As the introduction of a Particle Number (PN) regulation for Euro 6 GDI vehicles has been decided, technologies to reduce GDI PN emissions start to become necessary. For this requirement, a gasoline particulate filter (GPF) is an effective solution.
X