Refine Your Search

Topic

Author

Search Results

Technical Paper

X-Ray Measurements of High Pressure Diesel Sprays

2001-03-05
2001-01-0531
A quantitative and time-resolved technique has been developed to probe the fuel distribution very near the nozzle of a high-pressure diesel injector. This technique uses the absorption of synchrotron x-rays to measure the fuel mass with good time and position resolution. The penetrating power of x-rays allows measurements that are difficult with other techniques, such as quantitative measurements of the mass and penetration measurements of the trailing edge of the spray. Line-of-sight measurements were used to determine the fuel density as a function of time. The high time resolution and quantitative nature of the measurement also permit an accurate measure of the instantaneous mass flow rate through the nozzle.
Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
Technical Paper

Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray

2001-05-07
2001-01-2023
The direct injection spray-wall interactions were investigated experimentally using high-speed laser-sheet imaging, shadowgraphy, wetted footprints and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, at three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Transient Cavitating Flow Simulations Inside a 2-D VCO Nozzle Using the Space-Time CE/SE Method

2001-05-07
2001-01-1983
Cavitating flows inside a two-dimensional valve covered orifice (VCO) nozzle were simulated by using the Space-Time Conservation Element and Solution Element (CE/SE) method in conjunction with a homogeneous equilibrium cavitation model. As a validation for present model, cavitation over a NACA0015 hydrofoil was predicted and compared with previous simulation results as well as experimental observations. The model was then used to investigate the effects on internal cavitating flows of different nozzle design parameters, such as the hole size, hole aspect-ratio, hydro-erosion radius, and orifice inclination. Under different conditions, cavitating flows through fuel injectors generated hydraulic flip, supercavitation, full cavitation, and cyclical cavitation phenomena, which are commonly observed in experiments.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Technical Paper

The Spray Characteristics of Automotive Port Fuel Injection-A Critical Reviews

1995-02-01
950506
The requirement of meeting the emission standards for low emission vehicles (LEV) and ultra low emission vehicles (ULEV) has resulted in a more stringent examination of all elements of the automotive internal combustion engine that contribute to emission formation. The fuel system, as one of the key elements, is the subject of renewed and expanded research in an effort to understand and optimize the important parameters. Only through such enhanced understanding of the basic processes of fuel injection, metering, atomization, targeting, pulse-to-pulse variability and induction of fuel under cold, normal and elevated temperature conditions can the very low emissions of today's vehicles be further reduced to ULEV values.
Technical Paper

The Effect of Fuel-Line Pressure Perturbation on the Spray Atomization Characteristics of Automotive Port Fuel Injectors

1995-10-01
952486
An experimental study was carried out to characterize the spray atomization process of automotive port fuel injectors retrofitted to a novel pressure modulation piezoelectric driver, which generates a pressure perturbation inside the fuel line. Unlike many other piezoelectric atomizers, this unit does not drive the nozzle directly. It has a small size and can be installed easily between regular port injector and fuel lines. There is no extra control difficulty with this system since the fuel injection rate and injection timing are controlled by the original fuel-metering valve. The global spray structures were characterized using the planar laser Mie scattering (PLMS) technique and the spray atomization processes were quantified using phase Doppler anemometry (PDA) technique.
Technical Paper

Spray Targeting Inside a Production-Type Intake Port of a 4-Valve Gasoline Engine

1996-02-01
960115
An experimental study was carried out to investigate the spray behavior inside engine intake ports. Production-type intake ports of four-valve gasoline engines were modified for the optical access at directions. The global spray formation process was visualized through laser Mie scattering technique. The spray breakup and atomization processes, spray targeting and fuel dispersing characteristics were investigated as a function of elapse time after fuel injection. The spray interaction with the port wall and port air flow were examined with different types of port fuel injectors including single-stream, multi-stream, and air-shrouded ones. The spray targeting and dispersing characteristics inside two different intake ports were examined. It was found that spray targeting and fuel dispersion inside the intake port are strongly dependent on the spray characteristics, as a result of different injector designs and injector installation positions.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Research on the Applicability of Automated Driving Vehicle on the Expressway System

2020-12-30
2020-01-5205
Nowadays, transportation issues have been increasingly serious, and countries all over the world are actively exploring effective solutions. Intelligent highway and AV vehicle (AV) are considered to be the most effective ways to solve these problems. However, the dynamic uncertainty of driving environment factors is one of the key elements affecting vehicle driving safety, especially for AV, as well as traffic efficiency. The AV field has achieved fruitful results for this problem, but most of them focus on the identification of vehicle dynamics and visualization of roadside facilities. However, the feasibility and applicability of AV on the expressway system have not been tested in China. This paper summarized the development status and trend of AV and the difficulties and challenges of AV test on the expressway. Proposed test scenario of AV on the expressway, and on this basis, carried out a test and studied the adaptability of AV on the expressway.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Journal Article

Prediction of Engine-Out Emissions Using Deep Convolutional Neural Networks

2021-04-06
2021-01-0414
Analysis-driven pre-calibration of a modern automotive engine is extremely valuable in significantly reducing hardware investments and accelerating engine designs compliant with stricter emission regulations. Advanced modelling tools, such as a Virtual Engine Model (VEM) using Computational Fluid Dynamics (CFD), are often used within the framework of a Design of Experiments for Powertrain Engineering (DEPE) with the goal of streamlining significant portions of the calibration process. The success of the methodology largely relies on the accuracy of analytical predictions, especially engine-out emissions. Results show excellent agreements in engine performance parameters (with R2 > 98%) and good agreements in NOx and combustion noise (with R2 > 87%), while the Carbon Monoxide (CO), Unburned Hydrocarbons (HC) and Smoke emissions predictions remain a challenge even with a large n-heptane mechanism consisting of 144 species and 900 reactions and refined mesh resolution.
Technical Paper

Predicting Diesel Injector Nozzle Flow Characteristics

2004-01-16
2004-28-0014
In diesel injector nozzles, the shape of the orifice entrance and the sac-volume play a significant role in determining the orifice internal flow characteristics and the subsequent spray formation process. The sac-volume of the injector nozzle determines injection characteristics like injection rate shape and discharge coefficients. The sac-volume is also important from emissions point of view, in that it controls the amount of Un-Burnt Hydrocarbons (UBHC). This paper demonstrates the use of commercial dynamic and computational fluid dynamics (CFD) programs in predicting the flow characteristics of various nozzle orifice and sac-volume configurations. Three single orifice nozzle tips with varying sac configurations and orifice entrance shapes are studied. Transient simulations are carried out in order to compare the injection rates, discharge coefficients and internal flow characteristics for the nozzle tips. The simulation results are compared with experimental results.
Technical Paper

Numerical Prediction and Validation of Fuel Spray Behavior in a Gasoline Direct-Injection Engine

2001-09-24
2001-01-3668
Analysis of flow field and charge distribution in a gasoline direct-injection (GDI) engine is performed by a modified version of the KIVA code. A particle-based spray model is proposed to simulate a swirl-type hollow-cone spray in a GDI engine. Spray droplets are assumed to be fully atomized and introduced at the sheet breakup locations as determined by experimental correlations and energy conservation. The effects of the fuel injection parameters such as spray cone angle and ambient pressure are examined for different injectors and injection conditions. Results show reasonable agreement with the measurements for penetration, dispersion, global shape, droplet velocity and size distribution by Phase Doppler Particle Anemometry(PDPA) in a constant-volume chamber. The test engine is a 4-stroke 4-valve optically accessible single-cylinder engine with a pent-roof head and tumble ports.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Mixture Formation and Combustion Processes of Multi-Hole Nozzle with Micro Orifices for D.I. Diesel Engines

2007-10-29
2007-01-4049
In order to investigate effects of the multi-hole nozzle with micro orifices on mixture formation processes in Direct-Injection Diesel engines, mixture characteristics were examined via an ultraviolet-visible laser absorption scattering (LAS) technique under various injectors. The injection quantity per orifice per cycle was reduced by nozzle hole sizes. The LAS technique can provide the quantitative and simultaneous measurements of liquid and vapor phases concentration distributions inside of the fuel spray. Mass of ambient gas entrained into the spray, liquid/ vapor mass and mean equivalence ratio of total fuel were obtained based on Lambert Beer's law. As a result, the leaner and more homogeneous fuel-gas mixture can be achieved by reducing the nozzle hole diameter, in the meanwhile more ambient gas were entrained into the spray. Moreover, relationships between mixture formation and D.I.
Technical Paper

Microscopic Characterization of Diesel Sprays at VCO Nozzle Exit

1998-10-19
982542
A long-distance microscope with pulse-laser as optical shutter up to 25kHz was used to magnify the diesel spray at the nozzle hole vicinity onto 35-mm photographic film through a still or a high-speed drum camera. The injectors examined are high-pressure valve-covered-orifice (VCO) nozzles, from unit injector and common rail injection systems. For comparison, a mini-sac injector from a hydraulic unit injector is also investigated. A phase-Doppler particle analyzer (PDPA) system with an external digital clock was also used to measure the droplet size, velocity and time of arrival relative to the start of the injection event. The visualization results provide very interesting and dynamic information on spray structure, showing spray angle variations, primary breakup processes, and spray asymmetry not observed using conventional macroscopic visualization techniques.
Journal Article

Large Eddy Simulation of GDI Single-Hole Flow and Near-Field Spray

2012-04-16
2012-01-0392
The improvement of spray atomization and penetration characteristics of GDI multi-hole injector sprays is a major component of the engine combustion developments, in order to achieve the fuel economy and emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to achieve optimum multi-objective spray characteristics. The Volume-of-Fluid Large-Eddy-Simulation (VOF-LES) of the injector internal flow and spray break-up processes offers a computational capability to aid development of a fundamental knowledge of the liquid jet breakup process. It is a unique simulation method capable of simultaneous analysis of the injector nozzle internal flow and the near-field jet breakup process. Hence it provides a powerful toll to investigate the influence of nozzle design parameters on the spray geometric and atomization features and, consequently, reduces reliance on hardware trial-and-tests for multi-objective spray optimizations.
Technical Paper

Investigation of Diesel Spray Primary Break-up and Development for Different Nozzle Geometries

2002-10-21
2002-01-2775
The nozzle configuration for an injector is known to have an important effect on the fuel atomization. A comprehensive experimental and numerical investigation has been performed to determine the influence of various internal geometries on the primary spray breakup and development using the electronically controlled high-pressure diesel injection systems. Different types of multi-hole minisac and VCO nozzles with cylindrical and tapered geometries, and different types of single-hole nozzles with defined grades of Hydro Grinding (HG) were investigated. The global characteristics of the spray, including spray angle, spray tip penetration and spray pattern were measured from the spray images with a high-speed drum camera. A long-distance microscope with a pulsed-laser as the optical shutter was used to magnify the diesel spray at the nozzle hole vicinity. A CFD analysis of the internal flow through various nozzle geometries has been carried out with a commercial code.
X