Refine Your Search

Search Results

Technical Paper

Turbocharged diesel/CNG Dual-fuel Engines with Intercooler: Combustion, Emissions and Performance

2003-10-27
2003-01-3082
A yc6112ZLQ turbocharged 6 cylinder engine with intercooler was converted to operate in dual fuel mode with compressed natural gas (CNG) and pilot diesel. The influence of the CNG ratio, pilot diesel injection advance (ADC) and intake temperature after intercooler on the combustion process, emissions and engine performance was investigated. The results show that the combustion process of dual-fuel engines is faster than diesel engine. Both the ignition timing of the pilot fuel and the excess air ratio of total fuel λ dominate the combustion characteristics of duel-fuel engines. With the increase of CNG ratio, the pressure and temperature in cylinder decrease at rated mode, but increase at torque and low speed modes. With advanced the pilot injection timing or increased the intake temperature, the cylinder pressure and temperature increase.
Technical Paper

The Influence of Boost Pressure and Fuel Chemistry on Combustion and Performance of a HCCI Engine

2008-04-14
2008-01-0051
The influence of boost pressure (Pin) and fuel chemistry on combustion characteristics and performance of homogeneous charge compression ignition (HCCI) engine was experimentally investigated. The tests were carried out in a modified four-cylinder direct injection diesel engine. Four fuels were used during the experiments: 90-octane, 93-octane and 97-octane primary reference fuel (PRF) blend and a commercial gasoline. The boost pressure conditions were set to give 0.1, 0.15 and 0.2MPa of absolute pressure. The results indicate that, with the increase of boost pressure, the start of combustion (SOC) advances, and the cylinder pressure increases. The effects of PRF octane number on SOC are weakened as the boost pressure increased. But the difference of SOC between gasoline and PRF is enlarged with the increase of boost pressure. The successful HCCI operating range is extended to the upper and lower load as the boost pressure increased.
Technical Paper

The Effect of PRF Fuel Octane Number on HCCI Operation

2004-10-25
2004-01-2992
By mixing iso-octane with octane number 100 and normal heptane with octane number 0, it was possible to obtain a PRF fuel with octane rating between 0 and 100. The influence of PRF fuel’s octane number on the combustion characteristics, performance and emissions character of homogeneous charge compression ignition (HCCI) engine was investigated. The experiments were carried out in a single cylinder direct injection diesel engine. The test results show that, with the increase of the octane number, the ignition timing delayed, the combustion rate decreased, and the cylinder pressure decreased. The HCCI combustion can be controlled and then extending the HCCI operating range by burning different octane number fuel at different engine mode, which engine burns low octane number fuel at low load mode and large octane number fuel at large load mode. There exists an optimum octane number that achieves the highest indicated thermal efficiency at different engine load.
Technical Paper

The Design and Optimized Combination of Combustion Modesover Full-Load Range in a Multi-cylinder Light-duty Engine

2013-10-14
2013-01-2623
In order to achieve high efficiency and clean combustion indiesel engines, many advanced combustion concepts have been developed to simultaneously reduce NOx and soot emissions with high efficiency. However, the benefits of these combustion modes are limited to low loads because the energy release ratesaretoo fast at high loads. Recently, Dual-fuel highly premixed charge combustion (HPCC) strategies with the port injection of gasoline and direct injection of diesel have demonstrated advantages in terms of extending the operating range by the flexible control of fuel chemical reactivity and charge stratification. However, the extension to high-load in a turbocharged multi-cylinder diesel engine with the HPCC is a critical challenge due to excessive pressure rise rates. Mean while it suffers from the excessive of CO/HC emissions at low loads.
Journal Article

Study on the Double Injection Strategy of Gasoline Partially Premixed Combustion under a Light-Duty Optical Engine

2016-10-17
2016-01-2299
Gasoline partially premixed combustion (PPC) is a potential combustion concept to achieve high engine efficiency as well as low NOx and soot emissions. But the in-cylinder process of PPC is not well understood. In the present study, the double injection strategy of PPC was investigated on a light-duty optical engine. The fuel/air mixing and combustion process of PPC was evaluated by fuel-tracer planar laser-induced fluorescence (PLIF) and high-speed natural luminosity imaging technique, respectively. Combustion emission spectra of typical double injection case were analyzed. The primary reference fuel, PRF70 (70% iso-octane and 30% n-heptane by volume) was chosen as the lower reactivity fuel like gasoline. Double injection strategies of different first fuel injection timing and mass ratio of the two fuel injections were comparatively studied.
Technical Paper

Study of Biodiesel Combustion in a Constant Volume Chamber with Different Ambient Temperature and Oxygen Concentration

2011-08-30
2011-01-1931
Biodiesel is a widely used biofuel in diesel engines, which is of particular interest as a renewable fuel because it possesses the similar properties as the diesel fuel. The pure soybean biodiesel was tested in an optical constant volume combustion chamber using natural flame luminosity and forward illumination light extinction (FILE) methods to explore the combustion process and soot distribution at various ambient temperatures (800 K and 1000 K) and oxygen concentrations (21%, 16%, 10.5%). Results indicated that, with a lower ambient temperature, the autoignition delay became longer for all three oxygen concentrations and more ambient air was entrained by spray jet and more fuel was burnt by premixed combustion. With less ambient oxygen concentration, the heat release rate showed not only a longer ignition delay but also longer combustion duration.
Technical Paper

Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations

2011-04-12
2011-01-1190
A very competitive alcohol for use in diesel engines is butanol. Butanol is of particular interest as a renewable bio-fuel, as it is less hydrophilic and it possesses higher heating value, higher cetane number, lower vapor pressure, and higher miscibility than ethanol or methanol. These properties make butanol preferable to ethanol or methanol for blending with conventional diesel or gasoline fuel. In this paper, the spray and combustion characteristics of pure n-butanol fuel was experimentally investigated in a constant volume combustion chamber. The ambient temperatures were set to 1000 K, and three different oxygen concentrations were set to 21%, 16%, and 10.5%. The results indicate that the penetration length reduces with the increase of ambient oxygen concentration. The combustion pressure and heat release rate demonstrate the auto-ignition delay becomes longer with decreasing of oxygen concentrations.
Journal Article

Simultaneous Measurement of Natural Flame Luminosity and Emission Spectra in a RCCI Engine under Different Fuel Stratification Degrees

2017-03-28
2017-01-0714
Reactivity controlled compression ignition (RCCI) is a potential combustion strategy to achieve high engine efficiency with ultra-low NOx and soot emissions. Fuel stratification can be used to control the heat release rate of RCCI combustion. But the in-cylinder combustion process of the RCCI under different fuel stratification degrees has not been well understood, especially at a higher engine load. In this paper, simultaneous measurement of natural flame luminosity and emission spectra was carried out on a light-duty optical RCCI engine under different fuel stratification degrees. The engine was run at 1200 revolutions per minute under a load about 7 bar indicated mean effective pressure (IMEP). In order to form fuel stratification degrees from low to high, the common-rail injection timing of n-heptane was changed from -180° CA after top dead center (ATDC) to -10° CA ATDC, while the iso-octane delivered in the intake stroke was fixed.
Technical Paper

Simulating the Homogeneous Charge Compression Ignition Process Using a Detailed Kinetic Model for Dimethyl Ether (DME) and Methane Dual Fuel

2004-10-25
2004-01-2951
With a zero-dimensional detailed chemical kinetic model, a numerical study was carried out to investigate the chemical reaction phenomena encountered in the homogenous charge compression ignition process of dimethyl ether (DME) and methane dual fuel. The results show that the DME/methane dual fuel elementary reactions affect each other. The low temperature reaction (LTR) of DME is inhibited, the second molecular oxygen addition of DME is restrained, and β -scission plays a dominant role in DME oxidation. Hydrogen peroxide (H2O2) is controlled by DME oxidation and almost has no correlation with methane oxidation. The rich H2O2 concentration makes methane oxidation occurs at low initial temperature. Most of the formaldehyde (CH2O) is produced from H-abstraction of methoxy (CH3O) rather than from LTR of the DME. However, the heat release of methane oxidation promotes the hot flame reactions of DME which make the reactions with high activation energy occur.
Technical Paper

OH, soot and temperature distributions of wall-impinging diesel fuel spray under different wall temperatures

2019-12-19
2019-01-2184
OH, soot and temperature distributions of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set as 773 K, and the wall temperature (Tw) was set as 523 K, 673 K, 773 K, respectively. Three different injection pressures (Pi) of 60 MPa, 100 MPa, 160 MPa, and the ambient pressures (Pa) of 4 MPa were applied. The OH spatial distributions of wall-impinging spray were measured by the method of OH chemiluminescence imaging. Two-color pyrometry was applied to evaluate the spatial distributions of KL factor and flame temperature of wall-impinging spray. The results reveal that, OH chemiluminescence is observed in the region near the impingement point firstly. The regions of high OH chemiluminescence intensity and high KL factor appear in the location near the wall surface along the whole combustion process.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Technical Paper

Investigation of the Effects of Injection Timing on Thermo-Atmosphere Combustion of Methanol

2007-04-16
2007-01-0197
The effects of various injection timing of methanol on thermo-atmosphere combustion of methanol by port injection of dimethyl ether (DME) and direct injection of methanol were experimentally investigated. The experiment results show that, as injection timing is at 6 degree before TDC, the combustion process comprises three stages: low temperature heat release of DME, high temperature heat release of DME and diffusion combustion of methanol. As injection timing increases, premixed combustion proportion of methanol is increased and diffusion combustion proportion is decreased. As injection timing increases to 126 degree before TDC, diffusion combustion of methanol disappears. At this time, the combustion process shows typical two stages heat release of HCCI combustion. As injection timing increases, required DME rate is increased, combustion efficiency and indicated thermal efficiency all first increase and then decrease.
Technical Paper

Experimental and Modelling Investigations of the Gasoline Compression Ignition Combustion in Diesel Engine

2017-03-28
2017-01-0741
In this work the gasoline compression ignition (GCI) combustion characterized by both premixed gasoline port injection and gasoline direct injection in a single-cylinder diesel engine was investigated experimentally and computationally. In the experiment, the premixed ratio (PR), injection timing and exhaust gas recirculation (EGR) rate were varied with the pressure rise rate below 10 bar/crank angle. The experimental results showed that higher PR and earlier injection timing resulted in advanced combustion phasing and improved thermal efficiency, while the pressure rise rates and NOx emissions increased. Besides, a lowest ISFC of 176 g/kWh (corresponding to IMEP =7.24 bar) was obtained, and the soot emissions could be controlled below 0.6 FSN. Despite that NOx emission was effectively reduced with the increase of EGR, HC and CO emissions were high. However, it showed that GCI combustion of this work was sensitive to EGR, which may restrict its future practical application.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Technical Paper

Effects of Low Temperature Reforming (LTR) Products of Low Octane Number Fuels on HCCI Combustion

2018-09-10
2018-01-1682
In order to achieve high-efficiency and clean combustion in HCCI engines, combustion must be controlled reasonably. A great variety of species with various reactivities can be produced through low temperature oxidation of fuels, which offers possible solutions to the problem of controlling in-cylinder mixture reactivity to accommodate changes in the operating conditions. In this work, in-cylinder combustion characteristics with low temperature reforming (LTR) were investigated in an optical engine fueled with low octane number fuel. LTR was achieved through low temperature oxidation of fuels in a reformer (flow reactor), and then LTR products (oxidation products) were fed into the engine to alter the charge reactivity. Primary Reference Fuels (blended fuel of n-heptane and iso-octane, PRFs) are often used to investigate the effects of octane number on combustion characteristics in engines.
Technical Paper

Effects of Fuel Physical and Chemical Properties on Combustion and Emissions on Both Metal and Optical Diesel Engines and on a Partially Premixed Burner

2015-09-01
2015-01-1918
Effects of fuel physical and chemical properties on combustion and emissions were investigated on both metal and optical diesel engines. The new generation oxygenated biofuels, n-butanol and DMF (2,5-dimethylfuran) were blended into diesel fuel with 20% volume fraction and termed as Butanol20 and DMF20 respectively. The exhaust gas recirculation (EGR) rates were varied from zero to ∼60% covering both conventional and low temperature combustion. Meanwhile, the reference fuels such as n-heptane, cetane, and iso-cetane were also used to isolate the effects of different fuel properties on combustion and emissions. In addition, to clarify the effects of oxygenated structures on combustion and emissions, a fundamental partially premixed burner was also used. Results based on metal and optical diesel engines show that fuel cetane number is the dominated factor to affect the auto-ignition timing and subsequent combustion process.
Technical Paper

Effects of Dual Loop EGR on Performance and Emissions of a Diesel Engine

2015-04-14
2015-01-0873
An experimental study is carried out to compare the effects of high-pressure-loop, low-pressure-loop and dual-loop exhaust gas recirculation systems (HPL-EGR, LPL-EGR and DL-EGR) on the combustion characteristics, thermal efficiency and emissions of a diesel engine. The tests are conducted on a six-cylinder turbocharged heavy-duty diesel engine under various operating conditions. The low-pressure-loop portion (LPL-Portion) of DL-EGR is swept from 0% to 100% at several constant EGR rates, and the DL-EGR is optimized based on fuel efficiency. The results show that the LPL-EGR can attain the highest gross indicated thermal efficiency (ITEg) in the three EGR systems under all the tested conditions. At a middle load of 0.95 BMEP, 1660 r/min, the pumping losses of LPL-EGR lead to the lowest BTE among the EGR systems. The HPL-EGR can achieve the best brake thermal efficiency (BTE) and emissions within the EGR rate of 22.5% mainly due to the reduced pumping losses.
Technical Paper

Effects of Dual Loop EGR and Variable Geometry Turbocharger on Performance and Emissions of a Diesel Engine

2016-10-17
2016-01-2340
An experimental study is carried out to investigate the coupling between dual loop EGR (DL-EGR) and variable geometry turbocharger (VGT) on a heavy-duty commercial diesel engine under different operating conditions and inlet conditions. The effects of VGT rack position and high-pressure (HP) proportion in DL-EGR on engine performance and emissions are studied. The boosting system is a series 2-stage turbocharger with a VGT as the HP-stage. The HP-Proportion in DL-EGR is swept from 0% to 100% while several intake pressure values and EGR rates are fixed by adjusting the VGT position. Results demonstrate that the VGT and HP EGR both have great influence on the exhaust enthalpy and turbocharger efficiency. The exhaust enthalpy and the intake demand have great influence on the DL-EGR split strategy.
X