Refine Your Search

Topic

Search Results

Technical Paper

Transient Evaluation of Two-Stage Turbocharger Configurations using Model Predictive Control

2015-09-01
2015-01-1980
There is a trend towards increasing the degree of engine downsizing due to its potential for reducing fuel consumption and hence lowering CO2 emissions. However, downsizing introduces significant challenges for the engine airpath hardware and control, if driveability is to be maintained at an acceptable level. The transient response of the engine is affected by both the hardware selection and the associated controller. In order to understand the potential performance and limitations of the possible airpath hardware, a mean value model of the engine under consideration can be utilized. One benefit of these models is that they can be used as the basis of a model predictive controller which gives close to optimal performance with minimal tuning effort. In this paper we examine different two-stage series sequential turbocharger arrangements.
Technical Paper

Time Resolved Measurement of Cold Start HC Concentration Using the Fast FID

1996-10-01
961926
Understanding mixture formation phenomena during the first few cycles of an engine cold start is extremely important for achieving the minimum engine-out emission levels at the time when the catalytic converter is not yet operational. Of special importance is the structure of the charge (film, droplets and vapour) which enters the cylinder during this time interval as well as its concentration profile. However, direct experimental studies of the fuel behaviour in the inlet port have so far been less than fully successful due to the brevity of the process and lack of a suitable experimental technique. We present measurements of the hydrocarbon (HC) concentration in the manifold and port of a production SI engine using the Fast Response Flame Ionisation Detector (FRFID).
Technical Paper

The Fast FID as a Velocimeter for Flow Measurements in an Automotive Catalyst

1998-02-01
980879
The gas velocity through an automotive catalyst has been determined by measuring the time of flight of a pulse of propane injected at the inlet plane of the catalyst. The arrival time at the exit plane was detected by a fast flame ionization detector. By synchronizing and delaying the injection of propane with respect to the engine crankshaft position, the fluctuations of the exhaust gas velocity during the engine cycle were investigated. A number of tests at different engine load and speed points were carried out. The results show a complex velocity/time characteristic, including flow reversals. The technique is shown to be a viable option for flow measurement in this harsh environment.
Technical Paper

The Dynamic Effect of Residual Gas Temperature on Combustion Torque at Idle

2001-09-24
2001-01-3558
The amount of residual gas present in the cylinder has a well documented effect on the combustion event at idle. The high levels of burnt gas present at low engine speed leads to significant cyclic variability. This paper presents research which indicates that the temperature of the residual gas, which can vary from event to event depending on the spark timing, also has a significant effect on the combustion torque. The more the spark timing is retarded from MBT timing, the more thermal energy is present in the exhaust gas. The idle speed control strategy typically varies the spark to give fast torque actuation for good speed regulation and hence the temperature of the residual gas may change significantly within the space of a few events. The paper shows evidence of the phenomenon (with fixed engine speed and air mass flow) and discusses possible causes. It then proceeds to develop a dynamic model for the behaviour.
Technical Paper

Residual Gas Fraction Measurement and Estimation on a Homogeneous Charge Compression Ignition Engine Utilizing the Negative Valve Overlap Strategy

2006-10-16
2006-01-3276
This paper is concerned with the Residual Gas Fraction measurement and estimation on a Homogeneous Charge Compression Ignition (HCCI) engine. A novel in-cylinder gas sampling technique was employed to obtain cyclic dynamic measurements of CO2 concentration in the compression stroke and in combination with CO2 concentration measurements in the exhaust stroke, cyclic Residual Gas Fraction was measured. The measurements were compared to estimations from a physical, 4-cylinder, single-zone model of the HCCI cycle and good agreement was found in steady engine running conditions. Some form of oscillating behaviour that HCCI exhibits because of exhaust gas coupling was studied and the model was modified to simulate this behaviour.
Technical Paper

Real-Time Smoke Sensor for Diesel Engines

1986-02-01
860157
This paper describes a system for real-time smoke detection in diesel engines. Preliminary results are presented from a very simple sensor which detects the net charge level on smoke particles. There appears to be a useful correlation between the peak charge level and the Bosch smoke number. The mechanism by which the particulates is discussed, though no firm conclusions are reached.
Technical Paper

Real Time In-Cylinder and Exhaust NO Measurements in a Production SI Engine

1998-02-23
980400
A new fast response NO detector, based on the chemiluminescence (CLD) method has been used to measure continuous, real time levels of NO in the cylinder, and simultaneously in the exhaust port of a virtually unmodified production SI engine. The real time NO concentration data show a great deal of information. Simultaneous NO measurements taken in-cylinder at sample points a few millimetres apart show substantial differences. Exhaust and in-cylinder levels from the same cycle show even greater differences, though the levels on average are well correlated.
Technical Paper

Parameterization and Transient Validation of a Variable Geometry Turbocharger for Mean-Value Modeling at Low and Medium Speed-Load Points

2002-10-21
2002-01-2729
The parameterization of variable geometry turbochargers for mean-value modeling is typically based on compressor and turbine flow and efficiency maps provided by the supplier. At low turbocharger speeds, and hence low airflows, the heat exchange via the turbocharger housing affects the temperature-based measurements of the efficiencies. Therefore, the low-speed operating regime of the turbocharger is excluded from the supplied maps and mean-value models mainly rely on extrapolation into this region, which is regularly met in emission drive cycles, and hence of significance. This paper presents experimental data from a 2.0-liter turbocharged common-rail diesel engine. While the flow maps extend from the high-speed region in a natural way, the efficiency maps are severely affected by the heat transfer effect. It is argued that this effect should be included in the mean-value model.
Technical Paper

On the Time Delay in Continuous In-Cylinder Sampling From IC Engines

1989-02-01
890579
When gas sample is continuously drawn from the cylinder of an internal combustion engine, the sample that appears at the end of the sampling system corresponds to the in-cylinder content sometime ago because of the finite transit time which is a function of the cylinder pressure history. This variable delay causes a dispersion of the sample signal and makes the interpretation of the signal difficult An unsteady flow analysis of a typical sampling system was carried out for selected engine loads and speeds. For typical engine operation, a window in which the delay is approximately constant may be found. This window gets smaller with increase in engine speed, with decrease in load, and with the increase in exit pressure of the sampling system.
Journal Article

Measuring the Impact of Engine Oils and Fuels on Low-Speed Pre-Ignition in Downsized Engines

2014-04-01
2014-01-1219
One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of low speed pre-ignition (LSPI). LSPI may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, LSPI is thought to arise from local auto-ignition of areas in the cylinder which are rich in low ignition delay “contaminants” such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement). This paper describes a method for testing the propensity of different contaminants to cause a local pre-ignition in a gasoline engine. During one cycle, a small amount of contaminant is injected into one cylinder of a 4 cylinder engine.
Technical Paper

Measurement of the Unburnt Gas Temperature in an IC Engine by Means of a Pressure Transducer

2010-05-05
2010-01-1507
A novel method of measuring cylinder gas temperature in an internal combustion engine cylinder is introduced. The physical basis for the technique is that the flow rate through an orifice is a function of the temperature of the gas flowing through the orifice. Using a pressure transducer in the cylinder, and another in a chamber connected to the cylinder via an orifice, it is shown how the cylinder temperature can be determined with useful sensitivity. In this paper the governing equations are derived, which show that the heat transfer characteristics of the chamber are critical to the performance of the system, and that isothermal or adiabatic conditions give the optimum performance. For a typical internal combustion engine, it is found that the pre-compression cylinder temperature is related to the chamber pressure late in the compression process with sensitivity of the order of 0.005 bar/K.
Technical Paper

Knock Detection by Means of the Spark Plug

1986-03-01
860635
This paper describes a system for knock detection in automobile engines using the spark plug. Operation is based on detection of the effect of the characteristic pressure fluctuations in the cylinder on the conductivity of the slightly ionized combustion gases in the vicinity of the plug gap. A signal processing method is described which gives adequate signal to noise ratio up to high engine speed.
Technical Paper

Investigation into Partially Premixed Combustion in a Light-Duty Multi-Cylinder Diesel Engine Fuelled Gasoline and Diesel with a Mixture of

2007-10-29
2007-01-4058
Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility.
Technical Paper

In-Cylinder Measurements of Residual Gas Concentration in a Spark Ignition Engine

1990-02-01
900485
The residual gas fraction prior to ignition at the vicinity of the spark plug in a single cylinder, two-valve spark ignition engine was measured with a fast-response flame ionization hydrocarbon detector. The technique in using such an instrument is reported. The measurements were made as a function of the intake manifold pressure, engine speed and intake/exhaust valve-overlap duration. Both the mean level of the residual fraction and the statistics of the cycle-to-cycle variations were obtained.
Technical Paper

Impact of Lubricant Composition on Low-speed Pre-Ignition

2014-04-01
2014-01-1213
One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of pre-ignitions at low engine speed. These pre-ignitions may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, pre-ignitions are thought to arise from local autoignition of areas in the cylinder which are rich in low ignition delay “contaminants” such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement).
Technical Paper

Highly Homogeneous Compression Ignition in a Direct Injection Diesel Engine Fuelled with Diesel and Biodiesel

2007-07-23
2007-01-2020
Highly homogeneous compression ignition is difficult to achieve in a direct injection diesel engine. The difficulty of achieving adequate fuel vaporization and the problems of fuel spray wall impingement are the main factors. Limitation of the maximum operating load results from high rates of pressure rise that occur in this combustion regime. The levels of HC and CO emissions are raised substantially when compared with conventional combustion and remain a significant emission factor. In this study, two methods of achieving highly homogeneous combustion in a direct injection diesel engine were investigated, Nissan MK type and early injection. The effects of fuel injection pressure, injection timing, EGR level, EGR cooler efficiency and compression ratio were examined using a conventional 4 cylinder 2.0L common rail diesel engine with 18.4:1 and 14.4:1 compression ratios.
Journal Article

Gasoline Fuelled Partially Premixed Compression Ignition in a Light Duty Multi Cylinder Engine: A Study of Low Load and Low Speed Operation

2009-06-15
2009-01-1791
The objective of this study was to examine the operating characteristics of a light duty multi cylinder compression ignition engine with regular gasoline fuel at low engine speed and load. The effects of fuel stratification by means of multiple injections as well as the sensitivity of auto-ignition and burn rate to intake pressure and temperature are presented. The measurements used in this study included gaseous emissions, filter smoke opacity and in-cylinder indicated information. It was found that stable, low emission operation was possible with raised intake manifold pressure and temperature, and that fuel stratification can lead to an increase in stability and a reduced reliance on increased temperature and pressure. It was also found that the auto-ignition delay sensitivity of gasoline to intake temperature and pressure was low within the operating window considered in this study.
Technical Paper

Fast Response NO/HC Measurements in the Cylinder and Exhaust Port of a DI Diesel Engine

1998-02-01
980788
A novel Fast Response Chemiluminescence Detector and a Fast Flame Ionization detector have been used to examine the instantaneous NO and unburnt hydrocarbon concentration in the cylinder and exhaust port of a DI Diesel engine. The in-cylinder results indicate very high levels of NO in the premixed phase of combustion, followed by generally lower levels during the diffusion burning phase. Hydrocarbon signals also indicate significant detail. The in-cylinder uHC signal is consistent with the probe location being between two of the fuel sprays. Both in-cylinder and exhaust results indicate rather high cyclic variability in the NO levels at steady conditions. Variations in the timing and structure of the exhaust uHC signal during the valve open period with load may give insight into the fuel spray/air motion.
Technical Paper

Fast O2 Measurement using Modified UEGO Sensors in the Intake and Exhaust of a Diesel Engine

2013-04-08
2013-01-1051
Recent work has investigated the use of O₂ concentration in the intake manifold as a control variable for diesel engines. It has been recognized as a very good indicator of NOX emissions especially during transient operation, however, much of the work is concentrated on estimating the O₂ concentration as opposed to measuring it. This work investigates Universal Exhaust Gas Oxygen (UEGO) sensors and their potential to be used for such measurements. In previous work it was shown that these sensors can be operated in a controlled pressure environment such that their response time is of the order 10 ms. In this paper, it is shown how the key causes of variation (and therefore potential sources of error) in sensor output, namely, pressure and temperature are largely mitigated by operating the sensors in such an environment. Experiments were undertaken on a representative light-duty diesel engine using modified UEGO sensors in the intake and exhaust system.
Technical Paper

Experimental Investigation of Changing Fuel Path Dynamics in Twin-Independent Variable Camshaft Timing Engines

2002-10-21
2002-01-2752
The effect of a variable camshaft timing (VCT) disturbance on air-to-fuel ratio (AFR) signal is investigated for a twin-independent (TI) VCT engine. Different types of VCT disturbances on AFR signal are investigated. Gaseous fuel experiments are performed in addition to conventional petrol fuel experiments to show that not all the transient VCT disturbances acting on AFR are due to changes in air path dynamics. Experiments show that varying exhaust valve closing (EVC) timing has a significant effect on the air path dynamics and is an important cause of transient AFR deviations. However varying EVC does not affect the fuel puddle significantly. On the other hand varying inlet valve opening (IVO) timing has a strong effect on the fuel puddle size and is also an important cause of transient AFR deviations. Thus for superior transient AFR control in TI-VCT engines, it is essential to model not only the effects of valve timings on air path dynamics but also on the fuel path dynamics.
X