Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Use of the West Virginia University Truck Test Cycle to Evaluate Emissions from Class 8 Trucks

1995-02-01
951016
Emissions from light duty vehicles have traditionally been measured using a chassis dynamometer, while heavy duty testing has been based on engine dynamometers. However, the need for in-use vehicle emissions data has led to the development of two transportable heavy duty chassis dynamometers capable of testing buses and heavy trucks. A test cycle has been developed for Class 8 trucks, which typically have unsyncronized transmissions. This test cycle has five peaks, each consisting of an acceleration, cruise period, and deceleration, with speeds and acceleration requirements that can be met by virtually all vehicles in common service. Termed the “WVU 5 peak truck test”, this 8 km (5 mile) cycle has been used to evaluate the emissions from diesel and ethanol powered over-the-road tractors and from diesel and ethanol powered snow plows, all with Detroit Diesel 6V92 engines.
Technical Paper

Turbocharging a Bi-Fuel Engine for Performance Equivalent to Gasoline

1994-10-01
942003
A bi-fuel engine capable of operating either on compressed natural gas (CNG) or gasoline is being developed for the transition to alternative fuel usage. A Saturn 1.9 liter 4-cylinder engine was selected as a base powerplant. A control system that allows closed-loop optimization of both fuel delivery and spark timing was developed. Stock performance and emissions of the engine, as well as performance and emissions with the new controller on gasoline and CNG, have been documented. CNG operation in an engine designed for gasoline results in power loss because of the lower volumetric efficiency with gaseous fuel use, yet such an engine does not take advantage of the higher knock resistance of CNG. It is the goal of this research to use the knock resistance of CNG to recover the associated power loss. The two methods considered for this include turbocharging with a variable boost wastegate and raising the compression ratio while employing variable valve timing.
Technical Paper

Transient Response in a Dynamometer Power Absorption System

1992-02-01
920252
In order to obtain meaningful analyses of exhaust gas emissions and fuel economy for a heavy duty vehicle from a chassis dynamometer, the accurate simulation of road load characteristics is crucial. The adjusted amount of power to be absorbed by the chassis dynamometer during road driving of the tested vehicle needs to be calculated. In this paper, the performance of the chassis dynamometer under transient load cycle operations is discussed and the transient response of the power absorption system is presented. In addition, the design criteria of the chassis dynamometer used to test heavy duty vehicles under steady and transient load is described.
Technical Paper

Transient Emissions Comparisons of Alternative Compression Ignition Fuels

1999-03-01
1999-01-1117
The effects of fuel composition on emissions levels from compression ignition engines can be profound, and this understanding has led to mandated reductions in both sulfur and aromatic content of automotive diesel fuels. A Navistar T444E (V8, 7.3 liter) engine was installed on an engine dynamometer and subjected to transient emissions measurement using a variety of fuels, namely federal low sulfur pump diesel; California pump diesel; Malaysian Fischer-Tropsch fuel with very low sulfur and aromatic content; various blends of soy-derived biodiesel; a Fischer-Tropsch fuel with very low sulfur and 10% aromatics; and the same Fischer-Tropsch fuel with 10% isobutanol by volume. The biodiesel blends showed their ability to reduce particulate matter, but at the expense of increasing oxides of nitrogen (NOx), following the simple argument that cetane enhancement led to earlier ignition. However, the Fischer-Tropsch fuels showed their ability to reduce all of the regulated emissions.
Technical Paper

The Design of a Bi-Fuel Engine Which Avoids the Penalties Associated with Natural Gas Operation

1995-02-01
950679
An alternative fuel that has demonstrated considerable potential in reducing emissions and crude oil dependence is compressed natural gas (CNG). A dedicated CNG vehicle suffers from the lack of an adequate number of fueling stations and the poor range limited by CNG storage technology. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. Although many such bi-fuel vehicles are in existence, historically they have employed older engine designs and made compromises in engine control parameters that can degrade performance relative to gasoline and increase emissions. A modern production engine, a 1992 Saturn 1.9 liter 16 valve powerplant, is being optimized for operation on each fuel to realize the full potential of CNG in a bi-fuel system. CNG operation in an engine designed for gasoline typically suffers from reduced power, due in part to displacement of air by gaseous fuel.
Technical Paper

Study on the Use of Springs in a Dual Free Piston Engine Alternator

2016-10-17
2016-01-2233
The free piston engine combined with a linear electric alternator has the potential to be a highly efficient converter from fossil fuel energy to electrical power. With only a single major moving part (the translating rod), mechanical friction is reduced compared to conventional crankshaft technology. Instead of crankshaft linkages, the motion of the translator is driven by the force balance between the engine cylinder, alternator, damping losses, and springs. Focusing primarily on mechanical springs, this paper explores the use of springs to increase engine speed and reduce cyclic variability. A numeric model has been constructed in MATLAB®/Simulink to represent the various subsystems, including the engine, alternator, and springs. Within the simulation is a controller that forces the engine to operate at a constant compression ratio by affecting the alternator load.
Technical Paper

Speciation of Hydrocarbon Emissions from a Medium Duty Diesel Engine

1996-02-01
960322
Growing concern over ground-level ozone and its role in smog formation has resulted in extensive investigation into identifying ozone sources. Motor vehicle exhaust, specifically oxides of nitrogen and hydrocarbons, have been identified as major ozone precursors in urban areas. Past research has concentrated on assessing the impact of emissions from gasoline fueled light duty vehicles. However, little work has been done on identifying ozone precursors from medium and heavy duty diesel fueled vehicles. This paper presents the results of testing performed on a Navistar T 444E 190 horsepower diesel engine which is certified as a light/heavy-duty emissions classification and is used in medium duty trucks up to 11,800 kg (26,000 lb) GVW. Regulated emissions and speciated hydrocarbon emissions were collected using a filter, bag and Tenax adsorption cartridges for both steady state and transient engine operation.
Journal Article

Resonance of a Spring Opposed Free Piston Engine Device

2016-04-05
2016-01-0568
Recent free piston engine research reported in the literature has included development efforts for single and dual cylinder devices through both simulation and prototype operation. A single cylinder, spring opposed, oscillating linear engine and alternator (OLEA) is a suitable architecture for application as a steady state generator. Such a device could be tuned and optimized for peak efficiency and nominal power at unthrottled operation. One of the significant challenges facing researchers is startup of the engine. It could be achieved by operating the alternator in a motoring mode according to the natural system resonant frequency, effectively bouncing the translator between the spring and cylinder, increasing stroke until sufficient compression is reached to allow introduction of fuel and initiation of combustion. To study the natural resonance of the OLEA, a numeric model has been built to simulate multiple cycles of operation.
Technical Paper

Reduction of PM Emissions from Refuse Trucks through Retrofit of Diesel Particulate Filters

2003-05-19
2003-01-1887
Diesel particulate matter emissions, because they do not disperse as readily gaseous emissions, have a very localized effect and eventually settle to the ground not far from where they were emitted. One subset of heavy-duty diesel vehicles that warrant further attention for controlling particulate emissions matter is sanitation trucks. Cummins Inc. and West Virginia University investigated particulate emissions reduction technologies for New York City Department of Sanitation refuse trucks under the EPA Consent Decree program. Regulated emissions were measured on four retrofitted sanitation trucks with and without the DPF installed. Cummins engines powered all of the retrofitted trucks. The Engelhard DPX reduced PM emissions by 97% and 84% on the New York Garbage Truck Cycle (NYGTC) and Orange County Refuse Truck Cycle (OCRTC) respectively. The Johnson-Matthey CRT system reduced PM emissions by 81% and 87% over the NYGTC and OCRTC respectively.
Technical Paper

Performance of a High Speed Engine with Dual Fuel Capability

1994-03-01
940517
Concern over dwindling oil supplies has led to the adoption of alternate fuels to power fleet vehicles. However, during the interim period when alternate fuel supply stations are few and far between, dual fuel engines prove a necessity. In the light duty arena, these engines are typically gasoline engines modified to accommodate compressed natural gas (CNG) as an alternate fuel, but they are seldom optimized with both fuels in mind. A Saturn 1.9 liter 4 cylinder dual overhead cam engine was selected as a base for developing an optimized gasoline/CNG powerplant. Baseline data on power and steady state emissions (CO2, CO, NOx, HC) were found using the standard Saturn controller. In addition to monitoring standard sensor measurements, real-time pressure traces were taken for up to 256 cycles using a modified head with embedded PCB piezoelectric pressure transducers.
Technical Paper

Operation of a Compression Ignition Engine with a HEUI Injection System on Natural Gas with Diesel Pilot Injection

1999-10-25
1999-01-3522
Dual fuel engines employing pilot diesel injection to ignite premixed natural gas provide an opportunity for liquid petroleum fuel replacement and for reduced emissions of oxides of nitrogen (NOx) and particulate matter (PM). A Navistar T444E turbocharged V8 engine was converted to operate in dual fuel mode by metering the compressed natural gas (CNG) with an IMPCO Technologies, Inc. regulator and electronic valve while retaining the stock Navistar Hydraulically-Actuated Electronically-Controlled Unit Injection (HEUI) system for diesel pilot injection. A dedicated controller was designed and constructed to allow manual control of diesel fuel injection pulsewidth (FIPW), diesel injection advance (ADV), hydraulic injection control pressure (ICP) and natural gas mass flow. The controller employed two Microchip, Inc. PIC-based microcontrollers: one to perform initialization of a Silicon Systems, Inc. 67F867 engine interface peripheral, and the other to perform the runtime algorithms.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

1998-10-19
982533
Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

NOX Decomposition in Natural Gas, Diesel and Gasoline Engines for Selective NOX Recirculation

2005-05-11
2005-01-2144
Selective NOX Recirculation (SNR) involves three main steps in NOX reduction. The first step adsorbs NOX from the exhaust stream, followed by periodic desorption from the aftertreatment medium. The final step passes the desorbed NOX gas into the intake air stream and feeds into the engine. A percentage of the NOX is expected to be decomposed during the combustion process. The motivation for this research was to clarify the reduction of NOX from large stationary engines. The objective of this paper is to report the NOX decomposition phenomenon during the combustion process from three test engines. The results will be used to develop an optimal system for the conversion of NOX with a NOX adsorbtion system. A 1993 Cummins L10G natural gas engine, a 1992 Detroit Diesel series 60 engine and a 13hp Honda gasoline engine were used in the experiments. Commercially available nitric oxide (NO) was injected into the engine intake to mimic the NOX stream from the desorption process.
Technical Paper

Models for Predicting Transient Heavy Duty Vehicle Emissions

1998-10-19
982652
Heavy duty engine emissions represent a significant portion of the mobile source emissions inventory, especially with respect to oxides of nitrogen (NOx) emissions. West Virginia University (WVU) has developed an extensive database of continuous transient gaseous emission levels from a wide range of heavy duty diesel vehicles in field operation. This database was built using the WVU Transportable Heavy Duty Vehicle Emission Testing Laboratories. Transient driving cycles used to generate the continuous data were the Central Business District cycle (CBD), 5-peak WVU test cycle, WVU 5-mile route, and the New York City Bus cycle (NYCB). This paper discusses continuous emissions data from a transit bus and a tractor truck, each of them powered by a Detroit Diesel 6V-92 engine. Simple correlational models were developed to relate instantaneous emissions to instantaneous power at the drivewheels.
Technical Paper

Measurement Delays and Modal Analysis for a Heavy Duty Transportable Emissions Testing Laboratory

1995-02-01
950218
Concern over atmospheric pollution has led to the development of testing procedures to evaluate the hydrocarbon, carbon dioxide, carbon monoxide and oxides of nitrogen emissions from internal combustion engines. In order to perform emissions testing on vehicles, a chassis dynamometer capable of simulating expected driving conditions must be employed. West Virginia University has developed a Heavy Duty Transportable Emissions Testing Laboratory to perform chassis testing on trucks and buses. Emissions from the vehicle are monitored and recorded over the duration of a testing schedule. Usually the vehicle emissions from the whole test are reported as mass of emissions per unit distance driven. However, there is interest in relating the instantaneous emissions to the immediate conditions at specific points in the test, and in determining the emissions for discrete segments of the test (modal analysis).
Technical Paper

Impact of Vehicle Weight on Truck Behavior and Emissions, using On-Board Measurement

2005-10-24
2005-01-3788
On-board emissions measurement for heavy-duty vehicles has taken on greater significance because new standards now address in-use emissions levels in the USA. Emissions compliance must be shown in a “Not-to-exceed” (NTE) zone that excludes engine operation at low power. An over-the-road 1996 Peterbilt tractor was instrumented with the West Virginia University Mobile Emissions Measurement System (MEMS). The researchers determined how often the truck entered the NTE, and the emissions from the vehicle, as it was driven over different routes and at different test weights (20,740 lb, 34,640 lb, 61,520 lb, and 79,700 lb) The MEMS interfaced with the truck ECU, while also measuring exhaust flowrate, and concentrations of carbon dioxide (CO2) and oxides of nitrogen (NOx) in the exhaust. The four test routes that were employed included varying terrain types in order to simulate a wide range of on-road driving conditions. One route (called the Bruceton route) included a sustained hill climb.
Technical Paper

Ideal Computer Analysis of a Novel Engine Concept

1996-02-01
960080
A novel engine concept, currently under study, addresses many of the problems commonly associated with conventional internal combustion engines. In its simplest form the novel engine consists of a single crankshaft operating both a piston compressor and a piston expander which are connected by a continuous flame combustion chamber. One might regard this as a Brayton piston engine which is similar to a previous engine investigated by Warren. Also, due to the use of piston cylinders as the compression and expansion devices, this engine varies little mechanically from current engine technology thus allowing for easy implementation. The main improvement from conventional engine design is that the expansion cylinder can have a larger displacement than that of the compression cylinder. This allows more power to be extracted by lowering the loss due to blowdown and this will increase the thermal efficiency.
Technical Paper

Hydrocarbon Speciation of a Lean Burn Spark Ignited Engine

1997-10-01
972971
A research program at West Virginia University sought to identify and quantify the individual hydrocarbon species present in alternative fuel exhaust. Compressed natural gas (CNG) has been one of the most widely researched fuels proposed to replace liquid petroleum fuels. Regulated CNG non-methane hydrocarbon emissions are often lower than hydrocarbon emissions from conventional liquid fuels because of the absence of heavier hydrocarbons in the fuel. Reducing NOx and non-methane organic gas (NMOG) emission levels reduces the ozone forming potential (OFP) of the exhaust gases. A Hercules GTA 3.7 liter medium duty CNG engine was operated at seven load and speed set points using local supply CNG gas. The engine was operated at several rated, intermediate and idle speed set points. The engine was operated while the air/fuel ratio value was varied.
Technical Paper

HEAVY DUTY VEHICLE EXHAUST PLUME STUDY IN THE NASA/LANGLEY WIND TUNNEL

2003-05-19
2003-01-1895
Concern over health effects associated with diesel exhaust and debate over the influence of high number counts of particles in diesel exhaust prompted research to develop a methodology for diesel particulate matter (PM) characterization. As part of this program, a tractor truck with an electronically managed diesel engine and a dynamometer were installed in the Old Dominion University (ODU) Langley full-scale wind tunnel. This arrangement permitted repeat measurements of diesel exhaust under realistic and reproducible conditions and permitted examination of the steady exhaust plume at multiple points. Background particle size distribution was characterized using a Scanning Mobility Particle Sizer (SMPS). In addition, a remote sampling system consisting of a SMPS, PM filter arrangement, and carbon dioxide (CO2) analyzer, was attached to a roving gantry allowing for exhaust plume sampling in a three dimensional grid. Raw exhaust CO2 levels and truck performance data were also measured.
X