Refine Your Search

Search Results

Standard

Windshield Washer Tubing

2015-04-21
CURRENT
J1037_201504
This SAE Standard covers nonreinforced, extruded, flexible tubing intended primarily for use as fluid lines for automotive windshield washer systems which conform to the requirements of SAE J942.
Standard

Windshield Washer Tubing

2006-03-03
HISTORICAL
J1037_200603
This SAE Standard covers nonreinforced, extruded, flexible tubing intended primarily for use as fluid lines for automotive windshield washer systems which conform to the requirements of SAE J942.
Standard

Transmission Oil Cooler Hose

2014-06-04
CURRENT
J1532_201406
This SAE Standard covers hose intended for use with automatic transmission cooling system applications. Type A hoses are intended for original equipment or replacement applications while Type B hoses are intended for aftermarket auxiliary cooler applications only. The reference fluid for tests requiring the use of automatic transmission fluid (ATF) shall be Dexron III / Mercon 5 or equivalent ATF that is agreed to by hose manufacturer and customer.
Standard

Test Method for Evaluating the Electrochemical Resistanceof Coolant System Hoses and Materials

2000-06-30
HISTORICAL
J1684_200006
This test method provides a standardized procedure for evaluating the electrochemical resistance of automotive coolant hose and materials. Electrochemical degradation has been determined to be a major cause of EPDM coolant system hose failures. The test method consists of a procedure which induces voltage to a test specimen while it is exposed to a water/coolant solution. Method #1, referred to as a "Brabolyzer" test, is a whole hose test. Method #2, referred to as a "U" tube test, uses cured plate samples or plates prepared from tube material removed from hose (Method No. 2 is intended as a screening test only). Any test parameters other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requester.
Standard

Test Method for Evaluating the Electrochemical Resistance of Coolant System Hoses and Materials

2005-09-12
HISTORICAL
J1684_200509
This test method provides a standardized procedure for evaluating the electrochemical resistance of automotive coolant hose and materials. Electrochemical degradation has been determined to be a major cause of EPDM coolant system hose failures. The test method consists of a procedure which induces voltage to a test specimen while it is exposed to a water/coolant solution. Method #1, referred to as a “Brabolyzer” test, is a whole hose test. Method #2, referred to as a “U” tube test, uses cured plate samples or plates prepared from tube material removed from hose (Method No. 2 is intended as a screening test only). Any test parameters other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requester.
Standard

Test Method for Evaluating the Electrochemical Resistance of Coolant System Hoses and Materials

2018-11-21
CURRENT
J1684_201811
This test method provides a standardized procedure for evaluating the electrochemical resistance of automotive coolant hose and materials. Electrochemical degradation has been determined to be a major cause of EPDM coolant system hose failures. The test method consists of a procedure which induces voltage to a test specimen while it is exposed to a water/coolant solution. Method #1, referred to as a “Brabolyzer” test, is a whole hose test. Method #2, referred to as a “U” tube test, uses cured plate samples or plates prepared from tube material removed from hose (Method No. 2 is intended as a screening test only). Any test parameters other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requester.
Standard

Test Method for Evaluating the Electrical Resistance of Coolant System Hose Covers

2007-06-15
HISTORICAL
J2790_200706
This test method provides a standardized procedure for evaluating the electrical resistance of automotive coolant hose covers. It is know that an electrical potential exists between the engine and the radiator. Coolant hose cover conductivity has been determined to be a factor in reduced hose clamp life when vehicle build variations allow possible contact of the hose or the clamp to contact metal components on the radiator and engine thus completing an electrical circuit. The ensuing electrical current can undercut the clamp protective coating, leaving it vulnerable to the corrosive effects of road salts, moisture, and other environmental contaminants. SAE Recommended Practice J1684 addresses the conductivity of the tube portion of the coolant hose.
Standard

Test Method for Evaluating the Electrical Resistance of Coolant System Hose Covers

2010-02-15
CURRENT
J2790_201002
This test method provides a standardized procedure for evaluating the electrical resistance of automotive coolant hose covers. It is known that an electrical potential exists between the engine and the radiator. Coolant hose cover conductivity has been determined to be a factor to reduce hose clamp life when vehicle build variations allow possible contact of the hose or the clamp to metal components on the radiator and engine thus completing an electrical circuit. The ensuing electrical current can undercut the clamp protective coating, leaving it vulnerable to the corrosive effects of road salts, moisture, and other environmental contaminants. SAE Recommended Practice J1684 addresses the electrochemical resistance of the tube portion of the coolant hose.
Standard

Test Method for Evaluating the Electrical Resistance of Coolant System Hose Covers

2018-09-18
WIP
J2790
This test method provides a standardized procedure for evaluating the electrical resistance of automotive coolant hose covers. It is know that an electrical potential exists between the engine and the radiator. Coolant hose cover conductivity has been determined to be a factor in reduced hose clamp life when vehicle build variations allow possible contact of the hose or the clamp to contact metal components on the radiator and engine thus completing an electrical circuit. The ensuing electrical current can undercut the clamp protective coating, leaving it vulnerable to the corrosive effects of road salts, moisture, and other environmental contaminants. SAE Recommended Practice J1684 addresses the conductivity of the tube portion of the coolant hose.
Standard

Refrigerant 12 Automotive Air-Conditioning Hose

2015-04-21
CURRENT
J51_201504
This SAE Standard covers reinforced hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air-conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of −30 to 120 °C (−22 to 248 °F). Specific construction details are to be agreed upon between user and supplier.1 NOTE—R12 refrigerant has been placed on a banned substance list due to its ozone depletion characteristics. SAE J51 specification will be phased out as new automotive A/C systems are using R134a. SAE J2064 is the Standard for refrigerant 134a hose. For refrigerant 134a use, refer to SAE J2064.
Standard

Low-Permeation Fuel Fill and Vent Tube

2007-07-02
CURRENT
J2405_200707
This SAE Standard covers the minimum requirements for a low-permeation tubing (100 g/m2·day or less) for use as a low pressure (14.5 kPa) liquid- or vapor-carrying component for use in gasoline or diesel fuel filler, vent, and vapor systems. The construction shall be designed to be functional over a temperature range of –40 °C to 100 °C for the T1 designation, or –40 °C to 125 °C for the T2 designation.
Standard

Hose Gauge Evaluation Procedure

2018-04-10
CURRENT
J2666_201804
The Gauge Evaluation Procedure Task Force was formed by the Non-Hydraulic Hose Committee to develop a gauge evaluation procedure to be used when evaluating the capability of gauges used for hose measurement. The use of a standard method for gauge evaluation will help users easily compare equipment capability. The information provided in this recommendation is based on the methods used to produce the data presented in SAE J1759 and J2605.
Standard

Hose Gauge Evaluation Procedure

2010-06-16
HISTORICAL
J2666_201006
The Gauge Evaluation Procedure Task Force was formed by the Non-Hydraulic Hose Committee to develop a gauge evaluation procedure to be used when evaluating the capability of gauges used for hose measurement. The use of a standard method for gauge evaluation will help users easily compare equipment capability. The information provided in this recommendation is based on the methods used to produce the data presented in SAE J1759 and J2605.
Standard

Hose Clamp Specifications

2009-03-06
CURRENT
J1508_200903
This SAE Standard covers thirty-two (32) types of clamps most commonly and suitably being used on OEM coolant, fuel, oil, vacuum, and emission systems.
Standard

Hose Clamp Specifications

2019-01-15
WIP
J1508
This SAE Standard covers thirty-two (32) types of clamps most commonly and suitably being used on OEM coolant, fuel, oil, vacuum, and emission systems.
Standard

Coolant System Hoses

2019-03-08
WIP
J20
This SAE Standard covers reinforced and flexible hoses intended for use in water and ethylene glycol based engine-coolant system applications.
Standard

Coolant System Hoses

2006-06-19
HISTORICAL
J20_200606
This SAE Standard covers reinforced and flexible hoses intended for use in water and ethylene glycol-based engine-coolant system applications.
Standard

Coolant System Hoses

2015-03-05
CURRENT
J20_201503
This SAE Standard covers reinforced and flexible hoses intended for use in water and ethylene glycol-based engine-coolant system applications.
Standard

Clamping Force Test Procedure

2018-03-04
CURRENT
J2371_201803
This SAE Recommended Practice is a test procedure to obtain force data for self-compensating type clamps (SAE Type E, CTB, and CTW).
X