Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study on Combustion and Exhaust Emissions Characteristics of Oxymethylene Dimethyl Ether Blends with Fischer-Tropsch Fuels in Diesel Engines

2023-09-29
2023-32-0167
Synthetic fuels (e-fuels) synthesized from H2 and CO by renewable electricity are expected as the next- generation diesel fuels and two types of e-fuels have received extensive attention: Fischer-Tropsch (FT) fuel and Oxymethylene dimethyl ether (OME). In this study the effects of OME blending ratios with 0 to 50 vol.% in FT fuels on combustion, emissions and spray characteristics in diesel engines are investigated. The results suggest that the OME blends to FT fuels suppressed the deterioration in combustion efficiency under low intake oxygen concentration conditions. The smoke emissions of FT fuels and OME blended fuels were both lower than those of diesel fuel and decreased with the increase in the OME blend ratio, and the soot-NOx trade-off relation in diesel engines can be improved.
Technical Paper

Improvements in Diesel Combustion with After-Injection

2008-10-06
2008-01-2476
The effect of after-injection on exhaust gas emissions from a DI diesel engine with a common rail injection system was experimentally investigated for a range of operating conditions. The results showed that over the whole of the operating range, some reduction in smoke emissions can be achieved with after-injection, without deterioration in thermal efficiency and other emission characteristics. The optimum quantity of after-injection for smoke reduction is 20% of the total fuel supply, and the optimum timing is just after the main injection. Visualization in a bottom view type engine showed that with after-injection, soot formation in the main-injection decrease more due to a smaller quantity of fuel than without after-injection, and soot formation with after-injection is insignificant.
Technical Paper

Elimination of Combustion Difficulties in a Glow Plug-Assisted Diesel Engine Operated with Pure Ethanol and Water-Ethanol Mixtures

1983-02-01
830373
Forced ignition with glow plugs has great potential for the utilization of alcohol fuels in diesel engines. However, the installation of glow plugs may cause misfiring or knocking in parts of the operating range. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a glow plug-assisted diesel engine; these factors may be classified into two categories: the factors related to the temperature history of the drop lets before contact with the glow plug, and those related to the probability of contact. By optimizing these factors, the combustion difficulties were successfully eliminated over the whole operating range, and engine performance comparable with conventional diesel operation was achieved.
X