Refine Your Search

Search Results

Technical Paper

Advanced Catalyst Solutions for Hydrocarbon Emissions Control During Rich Operation of Lean NOx Trap Systems

2009-04-20
2009-01-0282
The operation of NOx Adsorber catalysts (NAC), also often referred to as Lean NOx Trap catalysts or NOx Storage-reduction catalysts, entails frequent periodic NOx regeneration events. These are accomplished by creating a net reducing, fuel-rich environment in the exhaust. The reduction of hydrocarbon emissions which occur during such fuel-rich events is challenging, due to the oxygen-deficient environment. In order to overcome this limitation, two possibilities exist: (i) oxygen can be stored during lean phase, to be used for hydrocarbon slip oxidation in the subsequent rich phase, or (ii) unreacted hydrocarbons can be trapped during the rich phase and oxidized during the following lean phase. In this work, two groups of catalytic solutions were developed and evaluated for hydrocarbon emission control based on these approaches: an Oxygen Storage Compound (OSC) based catalyst and zeolite-based hydrocarbon trap catalyst.
Journal Article

Axially Resolved Performance of Cu-Zeolite SCR Catalysts

2012-04-16
2012-01-1084
In this work, an alternative method is proposed and validated for quantifying the axial performance of a state-of-the-art Cu zeolite SCR catalyst. Catalyst cores of a standard length, with varying lengths of wash-coated regions were used to axially resolve the functional performance of the SCR catalyst. This proposed method was validated by quantifying the catalyst entrance and exit effects, as well as the effect of non-uniform wash-coat loading densities. This method is less susceptible to some of the complications highlighted in the previous studies, such as flow uniformity between channels, as well as radiative heating effects, since the product gases are sampled across the entire monolith cross-section rather than through a single catalyst channel. The specific catalyst functions quantified include: NO and NH₃ oxidation, NH₃ storage capacity, as well as NOx conversion efficiency.
Technical Paper

Catalyst Sulfur Poisoning and Recovery Behaviors: Key for Designing Advanced Emission Control Systems

2017-01-10
2017-26-0133
Advanced emission control systems for diesel engines usually include a combination of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and Ammonia Slip Catalyst (ASC). The performance of these catalysts individually, and of the aftertreatment system overall, is negatively affected by the presence of oxides of sulfur, originating from fuel and lubricant. In this paper, we illustrated some key aspects of sulfur interactions with the most commonly used types of catalysts in advanced aftertreatment systems. In particular, DOC can oxidize SO2 to SO3, collectively referred to as SOx, and store these sulfur containing species. The key functions of a DOC, such as the ability to oxidize NO and HC, are degraded upon SOx poisoning. The impact of sulfur poisoning on the catalytic functions of a DPF is qualitatively similar to DOC.
Technical Paper

Decoupling the Interactions of Hydrocarbons and Oxides of Nitrogen Over Diesel Oxidation Catalysts

2011-04-12
2011-01-1137
Oxidation of NO to NO₂ over a Diesel Oxidation Catalyst (DOC) plays an important role in different types of aftertreatment systems, by enhancing NOx storage on adsorber catalysts, improving the NOx reduction efficiency of SCR catalysts, and enabling the passive regeneration of Diesel Particulate Filters (DPF). The presence of hydrocarbon (HC) species in the exhaust is known to affect the NO oxidation performance over a DOC; however, specific details of this effect, including its underlying mechanism, remain poorly understood. Two major pathways are commonly considered to be responsible for the overall effect: NO oxidation inhibition, due to the presence of HC, and the consumption of the NO₂ produced by reaction with hydrocarbons. In this work we have attempted to decouple these two pathways, by adjusting the catalyst inlet concentrations of NO and NO₂ to the thermodynamic equilibrium levels and measuring the composition changes over the catalyst in the presence of HC species.
Technical Paper

Development of a Kinetic Model to Evaluate Water Storage on Commercial Cu-Zeolite SCR Catalysts during Cold Start

2017-03-28
2017-01-0968
Commercial Cu-Zeolite SCR catalyst can store and subsequently release significant amount of H2O. The process is accompanied by large heat effects. It is critical to model this phenomenon to design aftertreatment systems and to provide robust tuning strategies to meet cold start emissions and low temperature operation. The complex reaction mechanism of water adsorption and desorption over a Cu-exchanged SAPO-34 catalyst at low temperature was studied through steady state and transient experiments. Steady state isotherms were generated using a gravimetric method and then utilized to predict water storage interactions with respect to feed concentration and catalyst temperature. Transient temperature programmed desorption (TPD) experiments provided the kinetic information required to develop a global kinetic model from the experimental data. The model captures fundamental characteristics of water adsorption and desorption accompanied by the heat effects.
Technical Paper

Diagnostics of Field-Aged Three-Way Catalyst (TWC) on Stoichiometric Natural Gas Engines

2019-04-02
2019-01-0998
Three-way catalysts have been used in a variety of stoichiometric natural gas engines for emission control. During real-world operation, these catalysts have experienced a large number of temporary and permanent deactivations including thermal aging and chemical contamination. Thermal aging is typically induced either by high engine-out exhaust temperatures or the reaction exotherm generated on the catalysts. Chemical contamination originates from various inorganic species such as Phosphorous (P) and Sulfur (S) that contain in engine fluids, which can poison and/or mask the catalyst active components. Such deactivations are quite difficult to simulate under laboratory conditions, due to the fact that multiple deactivation modes may occur at the same time in the real-world operations. In this work, a set of field-aged TWCs has been analyzed through detailed laboratory research in order to identify and quantify the real-world aging mechanisms.
Journal Article

Diesel Particulate Filter System - Effect of Critical Variables on the Regeneration Strategy Development and Optimization

2008-04-14
2008-01-0329
Regeneration of diesel particulate filters poses major challenges in developing the particulate matter emission control technology to meet EPA 2007/2010 emissions regulations. The problem areas are multifold due to the complexity involved in designing the filter system, developing regeneration strategies and controlling the regeneration process. This paper discusses the need for active regeneration systems. It also addresses several key limitations and trade-offs between the regeneration strategy, chemical kinetics, exhaust gas temperature and the regeneration efficiency. Passive regeneration of diesel particulate filter systems is known to be highly dependent on the engine-out [NOx/PM] ratio as well as exhaust temperature over the duty cycle. Using catalytic oxidation of auxiliary fuel injected into the system, the exhaust gas temperature can be successfully enhanced for filter regeneration.
Journal Article

Effect of Transition Metal Ion Properties on the Catalytic Functions and Sulfation Behavior of Zeolite-Based SCR Catalysts

2017-03-28
2017-01-0939
Copper- and Iron- based metal-zeolite SCR catalysts are widely used in US and European diesel aftertreatment systems to achieve drastic reduction in NOx emission. These catalysts are highly selective to N2 under wide range of operating conditions. Nevertheless, the type of transition metal has a significant impact on the key performance and durability parameters such as NOx conversion, selectivity towards N2O, hydrothermal stability, and sensitivity to fuel sulfur content. In this study, we explained the differences in the performance characteristics of these catalysts based on their relative acidic-basic nature of transition metal present in these catalysts using practically relevant gas species present in diesel exhaust such as NO2, SOx, and NH3. These experiments show that Fe-zeolite has relatively acidic nature as compared to Cu-zeolite that causes NH3 inhibition and hence explains low NOx conversion on Fe-zeolite at low temperature under standard SCR conditions.
Technical Paper

Experimental Determination of the Kinetics of Diesel Soot Oxidation by O2 - Modeling Consequences

2003-03-03
2003-01-0833
Several complementary experimental techniques were applied to investigate kinetics of diesel soot oxidation by O2 in an attempt to provide accurate data for modeling of the Diesel Particulate Filters regeneration process. For two diesel soot samples with measurably different properties, it was shown that the complexity of their overall kinetic behavior was due to an initial period of rapidly changing reactivity. This initial high reactivity was understood not to be related to the SOF, and was quantitatively correlated to the extent of soot pre-oxidation. This initial reactivity can affect the averaged apparent kinetic parameters, for example resulting in the lower apparent activation energy values. After the initial soot pre-oxidation, which consumed ∼10-25% of carbon, the remaining soot was behaving very uniformly, producing linear Arrhenius plots in a remarkably broad range of temperatures (330-610°C) and integral conversions (up to 90%).
Technical Paper

Experimental and Kinetic Modeling of Degreened and Aged Three-way Catalysts: Aging Impact on Oxygen Storage Capacity and Catalyst Performance

2018-04-03
2018-01-0950
The aging impact on oxygen storage capacity (OSC) and catalyst performance was investigated on one degreened and one aged (hydrothermally aged at 955 °C for 50 h) commercial three-way catalyst (TWC) by experiments and modeling. The difference of OSC between the degreened and aged TWCs was dependent on catalyst temperature. The largest difference was found at 600 °C, at which the amount of OSC decreased by 45.5%. Catalyst performance was evaluated through lightoff tests at two simulated engine exhaust conditions (lean and rich) on a micro-reactor. The aging impact on the catalyst performance was different under lean and rich environments and investigated separately. At the lean condition, oxidation of CO and C3H6 was significantly suppressed while oxidation of C3H8 was relatively less degraded. At the rich condition, the inhibition effect was more pronounced on the aged TWC and inhibiting hydrocarbon species from C3H6 partial oxidation can survive at temperatures up to 450 °C.
Technical Paper

Hydrocarbon Poisoning of Cu-Zeolite SCR Catalysts

2012-04-16
2012-01-1096
The effects of propylene (C₃H₆) and dodecane (n-C₁₂H₂₆) exposure on the NH₃-based selective catalytic reduction (SCR) performance of two Cu-exchanged zeolite catalysts were investigated. The first sample was a model Cu/beta zeolite sample and the second a state-of-the-art Cu/zeolite sample, with the zeolite material characterized by relatively small pores. Overall, the state-of-the-art sample performed better than the model sample, in terms of hydrocarbon inhibition (which was reduced) and N₂O formation (less formed). The state-of-the-art sample was completely unaffected by dodecane at temperatures lower than 300°C, and only slightly inhibited (less than 5% conversion loss), for standard SCR, by C₃H₆. There was no evidence of coke formation on this catalyst with C₃H₆ exposure. The model sample was more significantly affected by hydrocarbon exposure. With C₃H₆, inhibition is associated with its partial oxidation intermediates adsorbed on the catalyst surface.
Journal Article

Hydrocarbon Storage on Small-Pore Cu-Zeolite SCR Catalyst

2013-04-08
2013-01-0508
In this study we investigated the interaction of short- and long-chain hydrocarbons (HCs), represented by propene (C₃H₆) and n-dodecane (n-C₁₂H₂₆), respectively, with a state-of-the-art small-pore Cu-Zeolite SCR catalyst. By varying HC adsorption conditions, we determined that physisorption was the primary mechanism for some minor HC storage at low temperatures (≺ 200°C), while chemical transformation was involved in more substantial HC storage at higher temperatures (200-400°C). The latter was evidenced by the oxygen-dependent and thermally activated nature of the storage process, and further confirmed by the carbon-rich composition of the deposits. The nature of HC-derived deposits of different origins and amounts was further probed using the standard SCR reaction at kinetically challenging conditions (at 200°C), as well by ammonia adsorption/desorption experiments.
Journal Article

Impact of Accelerated Hydrothermal Aging on Structure and Performance of Cu-SSZ-13 SCR Catalysts

2015-04-14
2015-01-1022
In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
Technical Paper

Impact of Different Forms of Sulfur Poisoning on Diesel Oxidation Catalyst Performance

2013-04-08
2013-01-0514
Despite drastic reduction of sulfur content in diesel fuel in the recent years, especially with the introduction of Ultra-Low Sulfur Diesel (ULSD), sulfur poisoning remains one of the most significant factors impacting performance of various catalysts in diesel aftertreatment systems. This is because even with ULSD, cumulative exposure of a catalyst over its lifetime in a heavy-duty diesel system may amount to kilograms of sulfur. In this study, we have found that the impact of sulfur poisoning on the performance of various diesel oxidation catalysts (DOC) strongly depends on the catalyst's operation history. For example, exposing a DOC to limited amounts of freshly deposited sulfur in bench reactor testing was shown to have a substantial detrimental effect. On the other hand, several samples which returned from vehicle or test-cell aging with high sulfur loading, have shown no signs of poisoning.
Journal Article

Impact of Rh Oxidation State on NOx Reduction Performance of Multi-Component Lean NOx Trap (LNT) Catalyst

2016-04-05
2016-01-0947
Typical Lean NOx Trap (LNT) catalyst composition includes precious metal components (Pt, Pd, and/or Rh), responsible for NO oxidation during lean operation and NOx reduction during rich operation. It was found that redox history of commercial LNT catalyst plays a significant role on deciding its NOx conversion under Lean/Rich cyclic condition. Further test had shown that fully formulated LNT catalyst being pre-reduced had shown much better NO reduction activity during the temperature-programmed reduction (TPRx) of NO than the same LNT catalyst being oxidized. The following study with Rh-only and Pt-only catalyst had demonstrated that Rh plays a key role on the large variation of the NO reduction function due to oxidation state change over LNT catalyst.
Technical Paper

Impact of Sulfur-Oxides on the Ammonia Slip Catalyst Performance

2014-04-01
2014-01-1545
The ammonia slip catalyst (ASC), typically composed of Pt oxidation catalyst overlaid with SCR catalyst, is employed for the mitigation of NH3 slip originating from SCR catalysts. Oxidation and SCR functionalities in an ASC can degrade through two key mechanisms i) irreversible degradation due to thermal aging and ii) reversible degradation caused by sulfur-oxides. The impact of thermal aging is well understood and it mainly degrades the SCR function of the ASC and increases the NH3 conversion to undesired products [1]. This paper describes the impact of sulfur-oxides on critical functions of ASC and on NH3 oxidation activity and selectivity towards N2, NOx and N2O. Furthermore impact of desulfation under selected conditions and its extent of ASC performance recovery is explained.
Journal Article

Investigation of the Impact of Real-World Aging on Diesel Oxidation Catalysts

2012-04-16
2012-01-1094
Real-world operation of diesel oxidation catalysts (DOCs), used in a variety of aftertreatment systems, subjects these catalysts to a large number of permanent and temporary deactivation mechanisms. These include thermal damage, induced by generating exotherm on the catalyst; exposure to various inorganic species contained in engine fluids; and the effects of soot and hydrocarbons, which can mask the catalyst in certain operating modes. While some of these deactivation mechanisms can be accurately simulated in the lab, others are specific to particular engine operation regimes. In this work, a set of DOCs, removed from prolonged service in the field, has been subjected to a detailed laboratory study. Samples obtained from various locations in these catalysts were used to characterize the extent and distribution of deactivation.
Technical Paper

Lean Breakthrough Phenomena Analysis for TWC OBD on a Natural Gas Engine using a Dual-Site Dynamic Oxygen Storage Capacity Model

2017-03-28
2017-01-0962
Oxygen storage capacity (OSC) is one of the most critical characteristics of a three-way catalyst (TWC) and is closely related to the catalyst aging and performance. In this study, a dynamic OSC model involving two oxygen storage sites with distinct kinetics was developed. The dual-site OSC model was validated on a bench reactor and a natural gas engine. The model was capable of predicting temperature dependence on OSC with H2, CO and CH4 as reductants. Also, the effects of oxygen concentration and space velocity on the amount of OSC were captured by the model. The validated OSC model was applied to simulate lean breakthrough phenomena with varied space velocities and oxygen concentrations. It is found that OSC during lean breakthrough is not a constant for a particular TWC catalyst and is dependent on space velocity and oxygen concentration. Specifically, breakthrough time exhibits a non-linear, inverse correlation to oxygen flux.
Technical Paper

Mechanistic Studies of the Catalytic Chemistry of NOx in Laboratory Plasma-Catalyst Reactors

2000-10-16
2000-01-2965
Several reactor systems have been used to study the catalytic chemistry of a particular proprietary zeolitic catalyst in conditions that mimic those found in light-duty diesel exhaust after a non-thermal plasma generator. Very similar catalytic results were obtained with NO + plasma or NO2 as the source of NOx using propene (C3H6) as the reductant. The formation of nitrogen, carbon dioxide, and other products were studied from 150°C to 250°C using a He balance gas and NOx in the form of NO2. The results demonstrate that nitrogen is formed by the selective catalytic reduction of NO2 by propene. The highest activity for N2 formation from NO2 was near 50% conversion at 200°C for a space velocity of 12,600 h-1. The NOx conversion by adsorption and by catalytic reduction was quantified. By performing studies with and without the presence of water, a clear separation in behavior between adsorption processes and catalytic reaction was observed.
Journal Article

N2O Formation and Mitigation in Diesel Aftertreatment Systems

2012-04-16
2012-01-1085
The high global warming potential of nitrous oxide (N₂O) led to its recent inclusion in the list of regulated pollutants under the emerging greenhouse gas regulations. While N₂O can be present in small quantities among the combustion products, it can also be generated as a minor byproduct in various types of aftertreatment systems. In this work, a systematic review of sources of N₂O is presented, along with the potential mechanisms of formation in a typical selective-catalytic-reduction-based diesel exhaust aftertreatment system. It is demonstrated that diesel oxidation catalysts (DOC), selective catalytic reduction (SCR) catalyst, and ammonia slip catalyst (ASC) can all potentially contribute to N₂O formation, depending on the catalyst material and exhaust gas conditions, as well as aftertreatment operation strategies. Furthermore, catalysts used in SCR aftertreatment system are also shown to decompose and/or reduce N₂O to N₂ under select conditions.
X