Refine Your Search

Topic

Search Results

Technical Paper

The Long Distance Road Trial of a Combined Diesel Particulate Filter and Fuel Additive

2000-10-16
2000-01-2849
Trapping diesel particulates is effective in reducing both the number and the mass of fine particulate emissions from diesel engines, but unless the accumulated soot can be burned out or regenerated periodically, the vehicle to which the trap is fitted will cease to function after a relatively short time. A programme of work with soot traps using a low treat rate iron-strontium organo-metallic fuel additive to assist and secure regeneration has been carried out. As part of this programme, an advanced specification diesel engine passenger car equipped with a diesel particulate filter (DPF), was operated on roads in the UK for approximately 18 months, during which time the vehicle covered over 50,000 km After completion of 50,000 km on roads, the vehicle was operated on a chassis dynamometer to increase the distance covered with a DPF more rapidly to a final total of 80,000 km.
Technical Paper

The Emerging Market for Biodiesel and the Role of Fuel Additives

2007-07-23
2007-01-2033
With growing concern over greenhouse gases there is increasing emphasis on reducing CO2 emissions. Despite engine efficiency improvements plus increased dieselisation of the fleet, increasing vehicle numbers results in increasing CO2 emissions. To reverse this trend the fuel source must be changed to renewable fuels which are CO2 neutral. A common route towards this goal is to substitute diesel fuel with esterified seed oils, collectively known as Fatty Acid Methyl Esters. However a fundamental change to the fuel chemistry produces new challenges in ensuring compatibility between fuel and engine performance/durability. This paper discusses the global situation and shows how fuel additives can overcome the challenges presented by the use of biodiesel.
Technical Paper

The Effect of DI Nozzle Fouling on Fuel Spray Characteristics

1992-10-01
922232
The atomisation characteristics of DI diesel engine fuel injection nozzles have been the subject of intensive study over the last decade. Much of this work has been related to clean, single hole nozzles spraying into quiescent air, at either ambient conditions or elevated pressures and temperatures. Experience shows that fuel injector nozzles may foul very rapidly in field service, and that this might have a significant effect on the performance of the engine particularly with regard to emissions. The build up of material on the injector nozzle can be controlled by the addition of suitable fuel additives. This paper describes test procedures developed to assess deposit build up and to indicate the efficacy of keep clean additives. The paper then goes on to describe high speed photographic techniques for studying the fuel spray characteristics of clean and fouled injectors in a firing engine.
Journal Article

Temperature Programmed Oxidation as a Technique for Understanding Diesel Fuel System Deposits

2010-05-05
2010-01-1475
The fuel injection equipment (FIE) has always been paramount to the performance of the Diesel engine. Increasingly stringent emissions regulations have dictated that the FIE becomes more precise and sophisticated. The latest generation FIE is therefore less tolerant to deposit formation than its less finely engineered predecessors. However, the latest emissions regulations make it increasingly difficult for engine manufacturers to comply without the use of exhaust aftertreatment. This aftertreatment often relies on catalytic processes that can be impaired by non-CHON (carbon, hydrogen, oxygen and nitrogen) components within the fuel. Fuel producers have therefore also been obliged to make major changes to try and ensure that with the latest technology engines and aftertreatment systems the fuel is still fit for purpose. However, there has recently been a significant increase in the incidence of reported problems due to deposit build-up within vehicle fuel systems.
Journal Article

Sodium Contamination of Diesel Fuel, its Interaction with Fuel Additives and the Resultant Effects on Filter Plugging and Injector Fouling

2013-10-14
2013-01-2687
Diesel fuel distilled from crude oil should contain no greater than trace amounts of sodium. However, fuel specifications do not include sodium; there is a limit of five parts per million for the amount of sodium plus potassium in fatty acid methyl esters (FAME) used as biodiesel. Sodium compounds are often used as the catalyst for the esterification process for producing FAME and sodium hydroxide is now commonly used in the refining process to produce ultra-low sulphur diesel (ULSD) fuel from crude oil. Good housekeeping should ensure that sodium is not present in the finished fuel. A finished fuel should not only be free of sodium but should also contain a diesel fuel additive package to ensures the fuel meets the quality standards introduced to provide reliable operation, along with the longevity of the fuel supply infrastructure and the diesel engines that ultimately burn this fuel.
Technical Paper

Service Application of a Novel Fuel Borne Catalyst Dosing System for DPF Retrofit

2005-04-11
2005-01-0669
A dosing system has been developed to facilitate the addition of a fuel borne catalyst (FBC) to a vehicle's fuel supply. The on-board dosing system was primarily designed to reduce cost and complexity. One embodiment of the design provided an additional benefit, namely the automatic adjustment of treat rate according to duty cycle. For high duty operating cycles where average exhaust gas temperatures are high, a low treat rate of FBC is supplied. Conversely at low duty where the exhaust temperature is lower, a higher treat of FBC is delivered. Data from field applications are presented to demonstrate this feature.
Technical Paper

Retrofitting of Diesel Particulate Filters - Particulate Matter and Nitrogen Dioxide

2003-05-19
2003-01-1883
A diesel particulate filter (DPF) is a crucial weapon in the fight to control the downsides traditionally associated with diesel engined vehicles. The DPF not only produces the benefits required from an environmental standpoint but also has the consumer benefit of eliminating the visible black smoke associated with diesel engines. Thus DPFs have now become a reality, both for series production vehicles and as a retrofit application. Inevitably there are a number of alternative types of DPF and alternative techniques are used for ensuring they continue to function in an acceptable manner. Due to the complexity of the diesel combustion process and the emissions produced it is only to be expected that a device intended primarily to control one parameter would have some effect on other parameters. This paper looks at some different DPF technologies and how they effect emissions, with the emphasis on particulate emissions and the speciation of oxides of nitrogen.
Technical Paper

Retrofitting Urban Buses to Reduce PM and NO2

2004-06-08
2004-01-1939
In an attempt to improve ambient air quality, retrofit programmes have been encouraged; targeting reductions in PM emissions by means of diesel particulate filters (DPFs). However depending on the DPF design and operating conditions increased nitrogen dioxide (NO2) emissions have been observed, which is causing concern. Previous work showed that retrofitting a DPF system employing a fuel borne catalyst (FBC) to facilitate regeneration, reduced NO2 emissions. This paper outlines the investigation of a base metal coated DPF to enhance the reduction of NO2. Such a DPF system has been fitted to older technology buses and has demonstrated reliable field performance.
Technical Paper

Retrofitting TRU-Diesel Engines with DPF-Systems Using FBC and Intake Throttling for Active Regeneration

2005-04-11
2005-01-0662
Transport Refrigeration Units (TRU) powered by small diesel engines emit high PM and cause locally high PM levels. The concomitant health risks spurred efforts to devise a cost-effective curtailment of these emissions. Diesel particulate filters (DPF) of ceramic honeycomb construction very efficiently trap PM emissions, even ultrafines in the lung penetrating size range of below 300 nm. A fuel borne catalyst (FBC) can facilitate trap regeneration, by lowering the exhaust temperature requirements, but cannot alone guarantee reliable regeneration under all operating conditions of the TRU. A Swiss development team together with industrial partners therefore developed a fully automatic active regeneration system for the California Air Resources Board.
Technical Paper

Practical Experience of Fitting DPFs to Buses in Chile

2005-05-11
2005-01-2146
Continuing research into the effect of vehicle emissions is driving legislation, which is increasingly being enacted to encourage the retrofitting of emissions control devices. Of particular concern are emissions of diesel particulate matter and nitrogen oxides. More recently the adverse effects of nitrogen dioxide in particular, have been highlighted. A programme of work is underway in Santiago to demonstrate the suitability of retrofitting diesel particulate filters (DPF) to urban buses. This paper presents data, including regulated and unregulated emissions, from a bus fitted with a DPF that relies on a fuel borne catalyst (FBC) to facilitate regeneration of the DPF.
Journal Article

Possible Mechanism for Poor Diesel Fuel Lubricity in the Field

2012-04-16
2012-01-0867
Traditionally, diesel fuel injection equipment (FIE) has frequently relied on the diesel fuel to lubricate the moving parts. When ultra low sulphur diesel fuel was first introduced into some European markets in the early 1980's it rapidly became apparent that the process of removing the sulphur also removed other components that had bestowed the lubricating properties of the diesel fuel. Diesel fuel pump failures became prevalent. The fuel additive industry responded quickly and diesel fuel lubricity additives were introduced to the market. The fuel, additive and FIE industries expended much time and effort to develop test methods and standards to try and ensure this problem was not repeated. Despite this, there have recently been reports of fuel reaching the end user with lubricating performance below the accepted standards.
Technical Paper

Particulates Reduction in Diesel Engines Through the Combination of a Particulate Filter and Fuel Additive

1998-10-19
982654
Exhaust emissions legislation for diesel engines generally limits only the mass of emitted particulate matter. This limitation reflects the concerns and measurement technology at the time the legislation was drafted. However, evolving diesel particulate filter (DPF) systems offer the potential for reductions in the mass and more importantly, the number of particles emitted from diesel exhausts. Particulate filters require frequent cleaning or regeneration of accumulated soot, if the engine is to continue to operate satisfactorily. Exothermic reactions during regeneration can lead to severe thermal gradients in the filter system resulting in damage. Fuel additives have been evaluated to show significant reductions in light off temperature which allow frequent small regeneration events to occur, under mild operating conditions.
Technical Paper

Novel Additive for Particulate Trap Regeneration

1995-10-01
952355
One of the most promising ways to insure the periodic regeneration of a particulate trap, consists of additising the fuel with organo-metallic compounds. The present paper deals with a novel alkali product, able to promote natural regenerations, for exhaust temperatures as low as 200 °C, and treatment rates as low as 5 ppm metal. Tests have been carried out on a soot reactor and on an engine bench, with various trap locations in the exhaust, showing that the regeneration occurrence depends on temperature, soot mass loaded inside the porous structure and engine conditions. A complete trap cleaning still needs gas temperatures up to 400 °C, which can be encountered for high load conditions of the engine.
Technical Paper

Metal Emissions, NO2 and HC Reduction from a Base Metal Catalysed DPF/FBC System

2006-04-03
2006-01-0420
Due to concerns over NO2 emissions from platinum catalysts a base metal catalysed diesel particulate filter (DPF) has been developed and used in combination with fuel borne catalysts (FBC). Results are presented showing reductions in HC, NOX, NO2, and PAH emissions along with an assessment of the emissions of metals used in the FBC and the catalysed DPF. This data is used to show the likely reduction in overall iron and other metal emissions as a result of using the catalysed DPF/FBC system. A similar system has also been assessed for durability for over 2000 hours when fitted to a bus in regular service in Switzerland.
Technical Paper

Improved Diesel Particulate Filter Regeneration Performance Using Fuel Soluble Additives

1999-10-25
1999-01-3562
Interest has been growing in many countries in the potential use of diesel particulate filters (DPF). This type of after treatment technology has been shown to make very significant reductions in both the mass of particulate emitted in diesel exhaust gas, and also in the number of fine particulates, which have been linked in recent years with concerns for human health. Work carried out during a development programme investigating the capability of fuel soluble metallic additives to assist DPF regeneration, indicated superior performance from a novel combination of metals in fuel soluble form. Earlier work showed that a fuel soluble combination of organo-metallic additives based on sodium and strontium gave very effective regeneration characteristics, and was capable of burning out carbon at temperatures from about 160°C.
Technical Paper

Fouling of Two Stage Injectors - An Investigation into Some Causes and Effects

1997-05-01
971619
In the quest for improved fuel efficiency and reduced CO2 emissions, motor manufacturers are increasingly turning to the High Speed Direct Injection (HSDI) diesel engine for passenger car use. To achieve acceptable levels of noise and emissions at low loads two stage injection is being utilised. Such injection systems are prone to nozzle coking due to the small fuel metering holes, low opening pressures and low fuel flow rates under part load operation. This coking leads to a rapid deterioration of emissions performance. This paper describes work done to investigate conditions leading to this phenomena and the possible mechanisms involved.
Technical Paper

Field Experience of DPF Systems Retrofitted to Vehicles with Low Duty Operating Cycles

2004-01-16
2004-28-0013
For many years now, epidemiologists have been highlighting the potential damage to health and the associated cost, caused by diesel particulate emissions. There is still debate concerning the crucial characteristics of these particles, however many authorities have concluded that it is their duty to legislate the reduction of such emissions. The most common approach is to legislate that all new vehicles should meet ever stricter emissions limits. This puts the onus and the cost on the engine manufacturers. The emissions limits in developing countries are inevitably less stringent than those in the developed world, this gives the indigenous manufacturers the opportunity to compete and develop. However, vehicle replacement intervals dictate that the effect of legislation controlling new vehicles takes many years to propagate throughout the existent vehicle fleet.
Technical Paper

Experience of Fitting London Black Cabs with Fuel Borne Catalyst Assisted Diesel Particulate Filters - Part 2 Non-Regulated Emissions Measurements

2002-10-21
2002-01-2785
Forthcoming emissions legislation is driving the passenger car manufacturers towards the fitting of Diesel Particulate Filters (DPFs) as original equipment. In areas with a particular problem such as heavily congested city centres, retrospective legislation has also been introduced, for example in Hong Kong and Tokyo. Legislation mandating the retrofitting of DPFs obviously has an immediate effect on particulate emissions. Other authorities are thus investigating the efficacy of such measures. However with the increasing use of DPF technology concerns are now being raised over some currently unregulated emissions such as ultra fine particulate and NO2, although total particulate mass and oxides of nitrogen are regulated. To add to the data base for such issues a programme of work was run using London Black Cabs. Four cars were fitted with a DPF, an on-board dosing system to meter a fuel borne catalyst (FBC) into the fuel and a data logger to monitor the DPF performance.
Technical Paper

Experience of Fitting London Black Cabs with Fuel Borne Catalyst Assisted Diesel Particulate Filters - Part 1 Regulated Emissions and Regeneration Performance

2002-10-21
2002-01-2784
Forthcoming emissions legislation is driving the passenger car manufacturers towards the fitting of Diesel Particulate Filters (DPFs) as original equipment. However such initiatives are not retrospective and due to the replacement rate of the vehicle fleet, there is a time lag before the full benefit of the new measures are fully realised. To overcome this drawback, in areas with a particular problem such as heavily congested city centres, retrospective legislation has been introduced, for example in Hong Kong and Tokyo. Legislation mandating the retrofitting of DPFs obviously has an immediate effect on particulate emissions. Other authorities are thus investigating the efficacy of such measures. To add to the data base for such assessments Octel is running a demonstration programme using London Black Cabs. Four cars have been fitted with a DPF, an on-board dosing system to meter a fuel borne catalyst (FBC) into the fuel and a data logger to monitor the DPF performance.
Technical Paper

Emissions Characteristics of Diesel Vehicles Equipped With Particulate Filters and Using Fuel Additive For Regeneration

2000-06-19
2000-01-1925
Four vehicles were chosen to cover a range of engine technologies. These vehicles were fitted with diesel particulate filters (DPFs) of differing technology. Three of the vehicles have been driven on the road using an additised fuel to demonstrate totally passive operation of the DPF. As part of this programme all three vehicles underwent regulated emissions testing to demonstrate that there was no deterioration in emissions during the programme. Additionally a light commercial vehicle was tested to demonstrate the effect on emissions of the combination of additised fuel and the DPF. The performance of the DPFs during on-road use has already been reported; this paper therefore concentrates on discussion of the results of the emissions testing.
X