Refine Your Search


Search Results

Training / Education

Vehicle Sound Package Materials Web Seminar RePlay

This four-session course provides a detailed understanding of the source – path-receiver relationship for developing appropriate sound package treatments in vehicles, including automobiles, commercial vehicles, and other transportation devices. The web seminar provides a detailed overview of absorption, attenuation (barrier), and damping materials and how to evaluate their performances on material, component, and vehicle level applications. A significant part of this course is the case studies that demonstrate how properly designed sound package materials successfully address vehicle noise issues.
Technical Paper

Understanding Laboratory Versus In-Vehicle Performance of Sprayable and Sheet Applied Damping Materials

Liquid spray applied damping materials have potential advantages over conventional sheet damping materials in automotive body panel vibration applications. In order to understand the acoustical impact, a laboratory based NVH study was conducted to compare the damping and stiffness performance characteristics of various sprayable damping materials versus the production damping treatment. Based on this comparison, a criteria was developed to select potentially viable sprayable damping materials for vehicle testing. In-vehicle tests were also performed and compared to the laboratory findings to understand how well the results correlate. This paper discusses a criteria for selecting sprayable damping materials based on bench-top tests for vehicle applications, and the potential benefits of sprayable materials.
Technical Paper

Thoughts behind Developing SAE Standard J2883 - Random Incidence Sound Absorption Tests Using a Small Reverberation Room

The paper discusses the development of a new SAE standard J2883 for measuring sound absorption performance of absorption materials in a small reverberation room. It discusses the need for such a standard particularly in the automotive industry. It also discusses the need for understanding the parameters such as the room volume, diffusion and cut-off frequency, and the sample size that affect the measurements and how to address these parameters in developing a robust test method. Finally, the paper discusses some of the findings of the round robin tests where measurements were conducted in various size rooms, task force activities, and the proposed repeatability and reproducibility values of the test method.
Technical Paper

The Thought and Reasoning Behind Developing SAE J1637 - Vibration Damping Test Method

The paper discusses the importance of a well documented standardized laboratory test procedure to evaluate damping material performance for the automotive industry, and to understand the parameters that influence the precision of the test method. The standard outlines a methodology which was developed with the general consensus of automotive engineers, suppliers, and independent test laboratories. The methodology is based on the Oberst bar test method where a damping material is bonded to a specific size steel bar and the system is excited at its various modes of vibration under a cantilevered configuration. The damping performance is expressed in terms of composite loss factor, ηc, within the frequency range of approximately 100 Hz to 1000 Hz, and over the useful range of temperatures for the given application.
Technical Paper

The Thought Process for Developing Sound Package Treatments for a Vehicle

This paper discusses the thought process that one needs to go through for developing an appropriate sound package treatment for a vehicle. In the development process one needs to put proper emphasis on understanding the source, path, and the receiver system. One needs to have an understanding on how to reduce the noise at the source, path, and/or receiver location. One may need to conduct a feasibility study of the benefits of various noise control options. In terms of sound package treatments one needs to understand the fundamentals of acoustical materials how they work and why one material performs differently than another one, as well as the importance of a well documented specification that every supplier has to meet.
Technical Paper

Study on Test and Product Variations of Noise Reduction Capabilities of Headliners

This paper discusses the importance of studying different variabilities (test and product variations) that may affect the noise reduction capabilities of automotive headliners, constructed from different materials. For this purpose, interior noise measurements were made at a position approximating the operator ear level, with different headliner materials under various operating conditions. For better understanding of the effect of different variabilities on acoustical performance, various single number values were computed from the measured data reduced in 1/3 octave band frequencies. Statistical data analyses show that the acoustical performance evaluation of headliners is affected by the product variation from one headliner to another, as well as experimental variation due to vehicle performance and test variation.
Technical Paper

Sound Absorption Study for Automotive Carpet Materials

This paper discusses the results of an experimental study on sound absorption of a number of automotive carpet materials. The results are compared to each other and to other “acoustical materials”. Initial impedance tube measurements of 18 different materials showed the expected trend of increasing absorption as thickness increased. Twelve materials were then tested in a reverberation room. Test results showed that most materials had significant absorption above 500 Hz with values for the better materials approaching values for fiber glass. Absorption correlated highly (r = 0.92) with thickness and very highly (r = 0.98) with the product of thickness and surface weight, indicating that the absorption of new constructions can be predicted. However, reverberation room results did not correlate well with impedance tube results.
Technical Paper

SAE and Other Standards for Determining Acoustical Properties of Sound Package Materials

Test standards are essential for evaluating the performance of a product properly and for developing a data base for the product. This paper discusses various standards that are available for determining the acoustical performance of sound package materials. The paper emphasizes various SAE standards that are available in this area, the reasons why these standards are important to the researchers working in the mobility industry, the history behind the development of these standards, and how they are different from standards that are available from other standards organization on similar topics.
Technical Paper

Recycling of Automotive Seat Foam: Acoustics of Post Consumer Rebond Seat Foam For Carpet Underlayment Application

A study was conducted to understand the acoustic viability of using post consumer rebond seat foam materials in vehicles for floor carpet underlayment applications. These foam materials were obtained from two different sources: 1) polyurethane foam dismantled from seats of end of life vehicles (ELV or scrap vehicles), and 2) polyurethane foam recovered and cleaned from auto shredder residue (ASR) by the Argonne National Laboratories (ANL) using their cleaning method. The study was conducted using three North-American cars, each serving different market segments. Based on both laboratory and on-road tests conducted on each vehicle, the study concluded that the acoustical performance of the floor carpet underlayment part made of post consumer rebond foam is comparable to that of the current production part mostly made of shoddy materials.
Technical Paper

Rationale for a Standardized Vibration Damping Test Procedure for Automotive Applications

This paper discusses the importance of having an industry-wide standardized laboratory test procedure for proper evaluation of vibration damping materials, and for consistency between damping tests conducted by different test facilities. Several different vibration damping test procedures that are presently used in the automotive industry are briefly discussed. However, a test method that has been selected for a new proposed SAE Recommended Practice based on exciting a beam at various modes of vibration and at different temperatures is discussed here. The relative superiority of this test method over other methods, the importance of selecting the most appropriate beam size, and how the damping performance should be measured for consistency and clarity are emphasized. A round-robin test was conducted to determine the variability of the test procedure. Factors considered were type of damping material, bar mounting, and differences between laboratory instrumentation.
Technical Paper

Random Incidence Sound Absorption Measurement of Automotive Seats in Small Size Reverberation Rooms

Random incidence sound absorption measurements of automotive components such as floor carpets, seats, headliners and hoodliners are important during the design and development of noise control treatments in a vehicle. Small volume reverberation rooms [1]1 have been widely used in practice to determine the absorption properties of those components. The SAE Acoustical Materials Committee has organized a task force to develop a standard procedure for measuring random incidence sound absorption properties of flat samples, as well as automotive components in small reverberation rooms. Statistical analysis and correlation study between large reverberation rooms and small reverberation rooms of flat samples using data acquired from a recent round robin study were reported in SAE Paper 2005-01-2284 [2, 3].
Technical Paper

Predicting the Acoustical Performance of Weak Paths in a Sound Package System

The presence of any weak paths or leakage limits the best design and the acoustical performance of a sound package system in a vehicle. Techniques to predict the response at the design level could help in improving the performance of the sound package system. This paper discusses the development, verification, and implementation of an analytical technique for predicting the acoustical performance of a sound package system based on the principles of sound transmission coefficient and the surface area covered by each sub-system. This technique is especially suitable for predicting the acoustical performance of a weak path created by passthroughs or plugs in a sound package system. Initially, a simple system was developed and studied to verify the model. The predicted values were compared with the measured values. Based on the comparison, different parameters were identified and modified such that the model agrees closely with the measured data.
Technical Paper

Mechanical Impedance Based Vibration Damping Test

Traditionally, the damping performance of a visco-elastic material is measured using the Oberst bar damping test, where a steel bar is excited using a non-contacting transducer. However, in an effort to reduce the weight of the vehicles, serious effort is put in to change the body panels from steel to aluminum and composite panels in many cases. These panels cannot be excited using a non-contacting transducer, although, in some cases, a very thin steel panel (shim) is glued to the vibrating bar to introduce ferrous properties to the bar so it can be excited. In the off highway vehicles, although the panels are made of steel, they are very thick and are difficult to excite using the Oberst bar test method. This paper discusses a measurement methodology based on mechanical impedance measurements and has the potential to be a viable/alternate test method to the Oberst bar testing. In the impedance method, the test bar is mounted to a shaker at the center (Center Point method).
Technical Paper

Importance of Sealants for Interior Noise Control of Automobiles

Sealant materials are used in todays automobiles for many applications such as, sealing of body seams, sealing access holes and the filling of hollow cavities. The primary reasons for these applications are to prevent corrosion, prevent water intrusion, and to reduce the noise level in the passenger compartment. However, the noise control capabilities of sealant materials have not been explored until recently. This paper discusses the requirements that a noise control material must possess, and reviews how a sealant material can fulfil these requirements. Properly designed sealant materials can possess sound transmission loss (barrier) properties, vibration damping properties over a given frequency and temperature range of interest, and often sound absorption properties with proper formulation. This paper provides case studies to substantiate the acoustical capabilities of sealant materials.
Technical Paper

Feasibility of a Standardized Test Procedure for Random Incidence Sound Absorption Tests Using a Small Size Reverberation Room

In the automotive industry, random incidence sound absorption tests are conducted on flat material samples as well as on finished components such as headliners, seats, and floor carpet systems. This paper discusses a feasibility study that is being pursued by an SAE task force, under the direction of the Acoustical Materials Committee, to develop a small volume reverberation room test method for conducting random incidence sound absorption tests. This method has the potential to be suitable for flat material and component testing. A round-robin test program is being conducted to determine variability due to test procedures, room size differences and laboratory differences. The paper discusses the selection of test samples and provides an update on the findings of the round-robin test study.
Technical Paper

Evaluating Acoustical Performance of Expandable Sealant Materials

The use of sealant materials to improve interior acoustics has increased significantly in todays automobiles. One such application is to use expandable sealant materials in rails, pillars, and cavities to reduce noise propagation. However, there is no standardized method for evaluating the acoustical performance of these materials. This paper reviews the basics of noise control engineering and discusses a proposed laboratory based test methodology that has been developed for properly evaluating the acoustical performance or expandable sealant materials. The test method is intended to simulate actual applications so that different materials can be evaluated to achieve optimum acoustical performance within a channel representing the rails or pillars in automobiles.
Technical Paper

Empirically Predicting the Sound Transmission Loss of Double-Wall Sound Barrier Assemblies

This paper discusses an empirical method for predicting the Sound Transmission Loss (STL) performance of Sound Barrier Assembly (SBA) materials that are commonly used in the automotive industry. The prediction method is based on basic STL theories of single and double-wall systems, in conjunction with the double wall resonance and the standing wave resonance between the two walls. In addition, a practical technique for determining the acoustical influence of the decoupler in a double-wall system is proposed. When all these considerations are put together properly, one gets a much clearer picture of the STL characteristics of typical double wall systems, and understands how the barrier and decoupler together affect the STL performance. The validity of the empirical prediction method is substantiated by comparing predictions with measured results of more than 60 samples.
Technical Paper

Development of a Small Size Reverberation Room Standardized Test Procedure for Random Incidence Sound Absorption Testing

Small reverberation rooms are used in common practice for determining random incidence sound absorption properties of flat materials and finished parts. Based on current small reverberation room usage in the automotive industry, there is a need for standardization that would bring about an appropriate level of consistency and repeatability. To respond to this need, a feasibility study is being pursued by an SAE task force, under the direction of the Acoustical Materials Committee, to develop a small volume reverberation room test method for conducting random incidence sound absorption tests. In addition to an accepted test method for small reverberation rooms, a data driven correlation that relates full size reverberation room absorption testing to small size reverberation room testing would be beneficial in understanding the usage of both. A Round Robin study has been underway for more than three years and will be completed in 2005.
Technical Paper

Development of Quiet Sound Package Treatments for Class 8 Trucks

This paper focuses on the development of treatments to control airborne noise through the dash panel. For a noise control material supplier, these treatments can be the most challenging to design because of the number of pass-throughs and design constraints. The dash panel development process includes extensive in-truck testing and analysis to identify sound paths (location and magnitude) and establish design criteria, laboratory material testing to aid in the selection of appropriate materials, laboratory component testing to select areas requiring treatment and to design the shape of the treatments, and in-truck testing to verify the performance of the new treatments.
Technical Paper

Developing a Small Sample Facility for Testing Automotive Acoustical Materials at Low Frequencies

This paper discusses the development of a small sample test facility for properly evaluating the low frequency noise control performances of various automotive acoustical materials. Based on several tests conducted with 0.61 m (24 in) diameter samples, this facility is designed to operate in the frequency range of 35 Hz to 355 Hz. Near-field root-mean-square acoustic pressure and acoustic velocity were measured for this purpose, using a dual microphone probe. This methodology allows one to test acoustical materials without elaborate test facilities and without the need for any special acoustic test environment.