Refine Your Search

Topic

Author

Search Results

Technical Paper

Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark-Ignition Engines

1990-02-01
900060
The ability of certain induction systems to enhance turbulence levels at the time of ignition, through formation of long-lived tumbling vortices on the plane of the valve and cylinder axes, has been investigated in a two-valve spark-ignition engine by rotating the intake port at 90° and 45° to the orientation of production directed ports. Detailed measurements of the three velocity components, obtained by laser velocimetry, revealed that the 90° port generated a pure tumble motion, with a maximum tumbling vortex ratio of 1.5 at 295°CA, zero swirl, and 42% turbulence enhancement relative to the standard configuration, while the 45° port gave rise to a combined tumble/swirl structure with a maximum tumbling vortex ratio of 0.5 at 285°CA, swirl ratio of 1.0 at TDC, and turbulence enhancement of 24%. The implications of the two types of flow structures for combustion are discussed.
Technical Paper

The Upper-Load Extension of a Boosted Direct Injection Poppet Valve Two-Stroke Gasoline Engine

2016-10-17
2016-01-2339
Engine downsizing can effectively improve the fuel economy of spark ignition (SI) gasoline engines, but extreme downsizing is limited by knocking combustion and low-speed pre-ignition at higher loads. A 2-stroke SI engine can produce higher upper load compared to its naturally aspirated 4-stroke counterpart with the same displacement due to the double firing frequency at the same engine speed. To determine the potential of a downsized two-cylinder 2-stroke poppet valve SI gasoline engine with 0.7 L displacement in place of a naturally aspirated 1.6 L gasoline (NA4SG) engine, one-dimensional models for the 2-stroke gasoline engine with a single turbocharger and a two-stage supercharger-turbocharger boosting system were set up and validated by experimental results.
Technical Paper

The Modeling and Design of a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2015-09-01
2015-01-1970
Engine downsizing of the spark ignition gasoline engine is recognized as one of the most effective approaches to improve the fuel economy of a passenger car. However, further engine downsizing beyond 50% in a 4-stroke gasoline engine is limited by the occurrence of abnormal combustion events as well as much greater thermal and mechanical loads. In order to achieve aggressive engine downsizing, a boosted uniflow scavenged direct injection gasoline (BUSDIG) engine concept has been proposed and researched by means of CFD simulation and demonstration in a single cylinder engine. In this paper, the intake port design on the in-cylinder flow field and gas exchange characteristics of the uniflow 2-stroke cycle was investigated by computational fluid dynamics (CFD). In particular, the port orientation on the in-cylinder swirl, the trapping efficiency, charging efficiency and scavenging efficiency was analyzed in details.
Technical Paper

The Influence of Dilution Composition and Temperature Upon a Stratified Charge Spark Ignition Engine

2000-06-19
2000-01-1947
A thermodynamic model has been utilised in the analysis of a SI engine operating with a divided charge stratification system. Such a charge stratification system divides the cylinder charge into two distinct regions: a combustible charge around the spark plug and a dilution charge beyond this. The model has been utilised to reveal differing effects of both dilution charge composition (EGR or air) and temperature upon the performance and emissions of such a stratified charge engine.
Journal Article

The Effects of Charge Homogeneity and Repeatability on Particulates Using the PLIF Technique in an Optical DISI Engine

2014-04-01
2014-01-1207
The work was concerned with visualisation of the charge homogeneity and cyclic variations within the planar fuel field near the spark plug in an optical spark ignition engine fitted with an outwardly opening central direct fuel injector. Specifically, the project examined the effects of fuel type and injection settings, with the overall view to understanding some of the key mechanisms previously identified as leading to particulate formation in such engines. The three fuels studied included a baseline iso-octane, which was directly compared to two gasoline fuels containing 10% and 85% volume of ethanol respectively. The engine was a bespoke single cylinder with Bowditch style optical access through a flat piston crown. Charge stratification was studied over a wide spectrum of injection timings using the Planar Laser Induced Fluorescence (PLIF) technique, with additional variation in charge temperature due to injection also estimated when viable using a two-line PLIF approach.
Technical Paper

The Effect on Engine Performance and NO Emissions of a Two-Stage Expansion Cycle in a Spark Ignition Engine

1997-10-01
972991
This paper presents the development of an engine simulation program for SI engines and its application to a two-stage expansion cycle. The two-stage expansion analysis is performed using the engine simulation, where a sudden expansion much faster than the normal expansion takes place during the expansion stroke. The changes in NO emissions and knock tolerance of the resulting new engine cycle are investigated for the same compression ratio. The changes in NO emissions and specific fuel consumption through increasing the compression ratio in order to return to the same amount of work done within the cycle are also studied.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen

1996-05-01
961165
This is a first of a series of papers describing how the replacement of some of the inlet air with EGR modifies the diesel combustion process and thereby affects the exhaust emissions. This paper deals with only the reduction of oxygen in the inlet charge to the engine (dilution effect). The oxygen in the inlet charge to a direct injection diesel engine was progressively replaced by inert gases, whilst the engine speed, fuelling rate, injection timing, total mass and the specific heat capacity of the inlet charge were kept constant. The use of inert gases for oxygen replacement, rather than carbon dioxide (CO2) or water vapour normally found in EGR, ensured that the effects on combustion of dissociation of these species were excluded. In addition, the effects of oxygen replacement on ignition delay were isolated and quantified.
Technical Paper

Study on Flame Characteristics under Conditions of Stratified Flame Ignition Hybrid Combustion

2019-12-19
2019-01-2316
In Spark Ignition (SI)-Controlled Auto Ignition (CAI) hybrid combustion, the in-cylinder temperature and total mass of dilution charge are usually increased compared to the traditional SI engine in order to achieve and control the auto-ignition combustion, which would in turn lead to the variations of the diluted flame propagation combustion. In this study, the optical measurements were performed to understand the flame characteristics at highly diluted conditions. The results showed that the decrease of the flame propagation speed of rich mixture was less than that of lean mixture at highly diluted conditions. However, the inhomogeneous distribution of residual gas led to asymmetric development of flame propagation. The high temperature, strong dilution and rich mixture created local auto-ignition sites which were located in front of the main flame and gradually merged with the main flame.
Technical Paper

Study of Polycyclic Aromatic Hydrocarbons Evolution Processing in GDI Engines Using TRF-PAH Chemical Kinetic Mechanism

2016-04-05
2016-01-0690
In the present study, we developed a reduced TRF-PAH chemical reaction mechanism consisted of iso-octane, n-heptane and toluene as gasoline surrogate fuels for GDI (gasoline direct injection) spark ignition engine combustion simulation. The reduced mechanism consists of 85 species and 232 reactions including 17 species and 40 reactions related to the PAHs (polycyclic aromatic hydrocarbons) formation. The present mechanism was validated for extensive validations with experimental ignition delay times in shock tubes and laminar flame speeds in flat flame adiabatic burner for gasoline/air and TRF/air mixtures under various pressures, temperatures and equivalence ratios related to engine conditions. Good agreement was achieved for most of the measurement. Mole fraction profiles of PAHs for n-heptane flame were also simulated and the experimental trends were reproduced well. The vapor-phase and particulate-bound PAHs existed in GDI engine exhaust were sampled and analyzed by GC-MS.
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Study of Exhaust Re-Breathing Application on a DI SI Engine at Partial Load Operation

2018-09-03
2018-36-0129
Using Exhaust Gas Recycling (EGR) on internal combustion engines enables the reduction of emissions with a low or even no cost to the engine efficiency at part-load operation. The charge dilution with EGR can even increase the engine efficiency due to de-throttling and reduction of part load pumping losses. This experimental study proposed the use of late exhaust valve closure (LEVC) to achieve internal EGR (increased residual gas trapping). A naturally aspirated single cylinder direct injection spark ignition engine equipped with four electro-hydraulic actuated valves that enabled full valve timing and lift variation. Eight levels of positive valve overlap (PVO) with LEVC were used at the constant load of 6.0 bar IMEP and the speed of 1500 rpm. The results have shown that later exhaust valve closure (EVC) required greater intake pressures to maintain the engine load due to the higher burned gases content. Hence, lower pumping losses and thus higher indicated efficiency were obtained.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Research on Relativity of Knock Sensor Signal and Gasoline HCCI Combustion Obtained with Trapping Residual Gas

2010-04-12
2010-01-1242
A great deal of effort has been directed towards Gasoline HCCI engines, which have the potential of providing better fuel economy and emission characteristics than conventional SI engines. For stable HCCI engine operation, cycle-by-cycle based closed-loop control is needed. Such a control scheme requires an accurate and reliable sensor to monitor the combustion and provide a feedback signal. At present, the general method used to measure the combustion parameters is to monitor in-cylinder pressure with a cylinder pressure sensor. However, using in-cylinder pressure transducers is not feasible for use in mass production of HCCI engines. A good substitute to get information about combustion is the knock sensor, which is already equipped on engines on a large scale. In this paper, the knock signal from an HCCI engine equipped with 4VVAS is analyzed in detail to find the relationship between the combustion parameters and the knock sensor signal.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion

2002-03-04
2002-01-0420
Controlled Auto-Ignition (CAI) combustion was realised in a production type 4-stroke 4-cylinder gasoline engine without intake charge heating or increasing compression ratio. The CAI engine operation was achieved using substantially standard components modified only in camshafts to restrict the gas exchange process The engine could be operated with CAI combustion within a range of load (0.5 to 4 bar BMEP) and speed (1000 to 3500 rpm). Significant reductions in both specific fuel consumption and CO emissions were found. The reduction in NOx emission was more than 93% across the whole CAI range. Though unburned hydrocarbons were higher under the CAI engine operation. In order to evaluate the potential of the CAI combustion technology, the European NEDC driving cycle vehicle simulation was carried out for two identical vehicles powered by a SI engine and a CAI/SI hybrid engine, respectively.
Technical Paper

Optimization Energy Management Strategy of Plug-In Hybrid Electric City Bus Based on Driving Cycle Prediction

2016-04-05
2016-01-1241
The fuel economy of plug-in hybrid electric city bus (PHEV) is deeply affected by driving cycle and travel distance. To improve the adaption of energy management strategy, the equivalent coefficient of fuel is the key parameter that needs to be pre-optimized based on the predicted driving cycle. An iterative learning method was proposed and implemented in order to get the best equivalent coefficient based on the predicted driving cycle and battery capacity. In the iterative learning method, the energy model and kinematics model of the bus were built. The ECMS (Equivalent Consumption Minimization Strategy) method was applied to obtain the best fuel economy with the given equivalent coefficient. The driving paths and running time of city buses were relatively fixed comparing with other vehicles, and their driving cycle can be predicted by route content. The proposed optimized strategy was applied on the factory sets of plug-in hybrid electric city bus.
Technical Paper

Optimisation of In-Cylinder Flow for Fuel Stratification in a Three-Valve Twin-Spark-Plug SI Engine

2003-03-03
2003-01-0635
In-cylinder flow was optimised in a three-valve twin-spark-plug SI engine in order to obtain good two-zone fuel fraction stratification in the cylinder by means of tumble flow. First, the in-cylinder flow field of the original intake system was measured by Particle Image Velocimetry (PIV). The results showed that the original intake system did not produce large-scale in-cylinder flow and the velocity value was very low. Therefore, some modifications were applied to the intake system in order to generate the required tumble flow. The modified systems were then tested on a steady flow rig. The results showed that the method of shrouding the lower part of the intake valves could produce rather higher tumble flow with less loss of the flow coefficient than other methods. The optimised intake system was then consisted of two shroud plates on the intake valves with 120° angles and 10mm height. The in-cylinder flow of the optimised intake system was investigated by PIV measurements.
Technical Paper

Numerical Simulation of the Gasoline Spray with an Outward-Opening Piezoelectric Injector: A Comparative Study of Different Breakup Models

2018-04-03
2018-01-0272
The outward-opening piezoelectric injector can achieve stable fuel/air mixture distribution and multiple injections in a single cycle, having attracted great attentions in direct injection gasoline engines. In order to realise accurate predictions of the gasoline spray with the outward-opening piezoelectric injector, the computational fluid dynamic (CFD) simulations of the gasoline spray with different droplet breakup models were performed in the commercial CFD software STAR-CD and validated by the corresponding measurements. The injection pressure was fixed at 180 bar, while two different backpressures (1 and 10 bar) were used to evaluate the robustness of the breakup models. The effects of the mesh quality, simulation timestep, breakup model parameters were investigated to clarify the overall performance of different breakup model in modeling the gasoline sprays.
Technical Paper

Lubricant Induced Pre-Ignition in an Optical SI Engine

2014-04-01
2014-01-1222
This work was concerned with study of lubricant introduced directly into the combustion chamber and its effect on pre-ignition and combustion in an optically accessed single-cylinder spark ignition engine. The research engine had been designed to incorporate full bore overhead optical access capable of withstanding peak in-cylinder pressures of up to 150bar. An experiment was designed where a fully formulated synthetic lubricant was deliberately introduced through a specially modified direct fuel injector to target the exhaust area of the bore. Optical imaging was performed via natural light emission, with the events recorded at 6000 frames per second. Two port injected fuels were evaluated including a baseline commercial grade gasoline and low octane gasoline/n-heptane blend. The images revealed the location of deflagration sites consistently initiating from the lubricant itself.
X