Refine Your Search

Topic

Search Results

Technical Paper

Using Pneumatic Hybrid Technology to Reduce Fuel Consumption and Eliminate Turbo-Lag

2013-04-08
2013-01-1452
For the vehicles with frequent stop-start operations, fuel consumption can be reduced significantly by implementing stop-start operation. As one way to realize this goal, the pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into air tanks installed on the vehicle. The compressed air can then be reused to drive an air starter to realize a regenerative stop-start function. Furthermore, the pneumatic hybrid can eliminate turbo-lag by injecting compressed air into manifold and a correspondingly larger amount of fuel into the cylinder to build-up full-load torque almost immediately. This paper takes the pneumatic hybrid engine as the research object, focusing on evaluating the improvement of fuel economy of multiple air tanks in different test cycles. Also theoretical analysis the benefits of extra boost on reducing turbo-lag to achieve better performance.
Technical Paper

Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine

2018-04-03
2018-01-0050
Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

2016-04-05
2016-01-0219
An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Technical Paper

Study on Optimization of Regenerative Braking Control Strategy in Heavy-Duty Diesel Engine City Bus using Pneumatic Hybrid Technology

2014-04-01
2014-01-1807
Recovering the braking energy and reusing it can significantly improve the fuel economy of a vehicle which is subject to frequent braking events such as a city bus. As one way to achieve this goal, pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into tanks during braking, and then reuses the compressed air to power an air starter to realize a regenerative Stop-Start function. Unlike the pure electric or hybrid electric passenger car, the pneumatic hybrid city bus uses the rear axle to achieve regenerative braking function. In this paper we discuss research into the blending of pneumatic regenerative braking and mechanical frictional braking at the rear axle. The aim of the braking function is to recover as much energy as possible and at the same time distribute the total braking effort between the front and rear axles to achieve stable braking performance.
Technical Paper

Real-time Adaptive Predictive Control of the Diesel Engine Air-path Based on Fuzzy Parameters Estimation

2007-04-16
2007-01-0971
In this paper, a robust adaptive optimal tracking control design for the air-path system of diesel engines with uncertain parameters and external driver commands is proposed. First, an optimal controller based on the analytic solution of a performance index is derived. It achieves tracking of suitable references (corresponding to low emissions and fuel consumption) for both the air-fuel ratio and the fraction of the recirculated exhaust gas. Then, a fuzzy estimation algorithm is used to identify the plant parameters and consequently to adapt the controller online. The simulated diesel engine is a medium duty Caterpillar 3126B with six cylinders, equipped with a variable geometry turbocharger and an exhaust gas recirculation valve. The proposed controller design is based on the reduced third order mean value model and implemented as a closed-form nonlinear model predictive control law on the full order model.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

Optimization of the Number of Thermoelectric Modules in a Thermoelectric Generator for a Specific Engine Drive Cycle

2016-04-05
2016-01-0232
Two identical commercial Thermo-Electric Modules (TEMs) were assembled on a plate type heat exchanger to form a Thermoelectric Generator (TEG) unit in this study. This unit was tested on the Exhaust Gas Recirculation (EGR) flow path of a test engine. The data collected from the test was used to develop and validate a steady state, zero dimensional numerical model of the TEG. Using this model and the EGR path flow conditions from a 30% torque Non-Road Transient Cycle (NRTC) engine test, an optimization of the number of TEM units in this TEG device was conducted. The reduction in fuel consumption during the transient test cycle was estimated based on the engine instantaneous Brake Specific Fuel Consumption (BSFC). The perfect conversion of TEG recovered electrical energy to engine shaft mechanical energy was assumed. Simulations were performed for a single TEG unit (i.e. 2 TEMs) to up to 50 TEG units (i.e. 100 TEMs).
Technical Paper

Online Adjustment of Start of Injection and Fuel Rail Pressure Based on Combustion Process Parameters of Diesel Engine

2013-04-08
2013-01-0315
Most modern diesel engines are equipped with common fuel rail system. The common fuel rail pressure and start of injection are two important fuel path control variables which are needed to be carefully calibrated over all engine operation range. They both have big effects on engine emissions, fuel consumptions and combustion noise performance. Though there are mature techniques such as design of experiment, model based calibration together with optimization method for engine calibration task, the engine test points are still many and the calibration costs are still high. Besides, the outputs of the calibration are look up tables or maps which are used in engine open loop control strategy in engine control system. Open loop control system has no adaptive and disturbance rejection ability. So the initially optimally calibrated look up control tables will gradually become less and less optimal when the engine is aging.
Technical Paper

Modelling the Exhaust Gas Recirculation Mass Flow Rate in Modern Diesel Engines

2016-04-05
2016-01-0550
The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points.
Technical Paper

Modelling the Compression Ignition Engine for Control: Review and Future Trends.

2004-03-08
2004-01-0423
Constraints change as pollutant standards or embedded diagnosis demands require improvements in model accuracy and their suitability for control algorithm synthesis. From thermodynamic mathematical modelling to non-parametric models, a wide range of techniques has been investigated for the last thirty years involving both physicists and control engineers. The purpose of this paper is to give an overview of current modelling techniques oriented control analysis and design for compression ignition engines. Short examples illustrate each techniques and existing applications are considered. Comparison of various engine models exhibit the trend to include more physical knowledge inside model-based control design.
Technical Paper

Modeling and Control of Diesel Engines Equipped with a Two-Stage Turbo-System

2008-04-14
2008-01-1018
The two-stage turbocharging technique is an effective way to improve performance and reduce emissions in diesel engines. In this paper, we consider a diesel engine equipped with an exhaust gas recirculation (EGR) valve and two turbochargers in series. The low pressure turbine is of fixed geometry and the high pressure turbine is a variable geometry turbine (VGT). The control objective is to regulate air-to-fuel (AFR), EGR exhaust fraction and the power ratio of the two turbines by coordinated manipulation of the EGR and VGT actuators. Unlike engines with a single turbocharger, in two-staged turbocharged engines, regulation of the power ratio of the turbines is also needed in order to adequately define the equilibrium point of the engine airpath. First, a mean value engine model (MVEM) is proposed to physically describe the air path dynamics. With rich excitation of the controls in the MVEM, we identify several linear models for different areas of the engine speed-torque envelope.
Technical Paper

Modeling Techniques to Support Fuel Path Control in Medium Duty Diesel Engines

2010-04-12
2010-01-0332
In modern production diesel engine control systems, fuel path control is still largely conducted through a system of tables that set mode, timing and injection quantity and with common rail systems, rail pressure. In the hands of an experienced team, such systems have proved so far able to meet emissions standards, but they lack the analytical underpinning that lead to systematic solutions. In high degree of freedom systems typified by modern fuel injection, there is substantial scope to deploy optimising closed loop strategies during calibration and potentially in the delivered product. In an optimising controller, a digital algorithm will explicitly trade-off conflicting objectives and follow trajectories during transients that continue to meet a defined set of criteria. Such an optimising controller must be based on a model of the system behaviour which is used in real time to investigate the consequences of proposed control actions.
Technical Paper

In-Cylinder Pressure Modelling with Artificial Neural Networks

2011-04-12
2011-01-1417
More and more stringent emission regulations require advanced control technologies for combustion engines. This goes along with increased monitoring requirements of engine behaviour. In case of emissions behaviour and fuel consumption the actual combustion efficiency is of highest interest. A key parameter of combustion conditions is the in-cylinder pressure during engine cycle. The measurement and detection is difficult and cost intensive. Hence, modelling of in-cylinder conditions is a promising approach for finding optimum control behaviour. However, on-line controller design requires real-time scenarios which are difficult to model and current modelling approaches are either time consuming or inaccurate. This paper presents a new approach of in-cylinder condition prediction. Rather than reconstructing in-cylinder pressure signals from vibration transferred signals through cylinder heads or rods this approach predicts the conditions.
Technical Paper

Heat Recovery and Bottoming Cycles for SI and CI Engines - A Perspective

2006-04-03
2006-01-0662
The pursuit of fuel economy is forcing technology change across the range of control and engine management technologies. Improved thermal management has been addressed in order to promote fast warm-up, improved exhaust gas after-treatment performance, and lower variance in combustion through a consistent and high cylinder head temperature. Temperature management of exhaust gas is of increasing interest because of the need to maintain efficiency in after-treatment devices. More effective temperature management places requirements on heat exchange systems, and offers the potential for bottoming and heat recovery cycles that use energy transferred from the exhaust stream. Turbo-compounding is already established in heavy duty engines, where a reduction in exhaust gas temperature is the consequence of an additional stage of expansion through an exhaust turbine. A new project in electric turbo-compounding offers flexibility in the control of energy extracted from the exhaust stream[1].
Technical Paper

Explicit Model Predictive Control of the Diesel Engine Fuel Path

2012-04-16
2012-01-0893
For diesel engines, fuel path control plays a key role in achieving optimal emissions and fuel economy performance. There are several fuel path parameters that strongly affect the engine performance by changing the combustion process, by modifying for example, start of injection and fuel rail pressure. This is a multi-input multi-output problem. Linear Model Predictive Control (MPC) is a good approach for such a system with optimal solution. However, fuel path has fast dynamics. On-line optimisation MPC is not the good choice to cope with such fast dynamics. Explicit MPC uses off-line optimisation, therefore, it can be used to control the system with fast dynamics.
Technical Paper

Evaluating the Performance Improvement of Different Pneumatic Hybrid Boost Systems and Their Ability to Reduce Turbo-Lag

2015-04-14
2015-01-1159
The objective of the work reported in this paper was to identify how turbocharger response time (“turbo-lag”) is best managed using pneumatic hybrid technology. Initially methods to improve response time have been analysed and compared. Then the evaluation of the performance improvement is conducted using two techniques: engine brake torque response and vehicle acceleration, using the engine simulation code, GT-SUITE [1]. Three pneumatic hybrid boost systems have been considered: Intake Boost System (I), Intake Port Boost System (IP) and Exhaust Boost System (E). The three systems respectively integrated in a six-cylinder 7.25 l heavy-duty diesel engine for a city bus application have been modelled. When the engine load is increased from no load to full load at 1600 rpm, the development of brake torque has been compared and analysed. The findings show that all three systems significantly reduce the engine response time, with System I giving the fastest engine response.
Technical Paper

Energy Recovery Systems for Engines

2008-04-14
2008-01-0309
Energy recovery from IC engines has proved to be of considerable interest across the range of vehicle applications. The motivation is substantial fuel economy gain that can be achieved with a minimal affect on the “host” technology of the vehicle. This paper reviews the initial results of a research project whose objective has been to identify system concepts and control methods for thermal recovery techniques. A vapour power cycle is the means of energy transfer. The architecture of the system is considered along with support of the fuel economy claims with the results of some hybrid vehicle modelling. An overview of the latest experimental equipment and design of the heat exchanger is presented. The choice of control architecture and strategy, whose goal is overall efficiency of the engine system, is presented and discussed. Some initial control results are presented.
Technical Paper

Dynamic Analysis of the Libralato Thermodynamic Cycle Based Rotary Engine

2013-04-08
2013-01-1620
In this paper an initial dynamic analysis of the Libralato rotary engine prototype is conducted based on a joint engine model. Through the investigation of the Libralato thermodynamic cycle and the geometry characteristics of the engine structure, a multi-chamber core engine model is developed via GT-Power, a commercial software. The whole engine working volume is divided into 5 parts, including an intake chamber, a compression chamber, a combustion chamber, an expansion chamber and a virtual chamber which is used to correct the actual volume variation of the expansion chamber at the end of expansion stroke. The performance of the developed model is validated by experimental results. Then an initial analysis on the engine thermodynamic cycle, the engine operation characteristics and the gas exchange process is conducted. Furthermore, a multi-body mechanism model is designed to analyze the mechanical properties of the engine.
Technical Paper

Disturbance Sources in the Diesel Engine Combustion Process

2013-04-08
2013-01-0318
When a diesel engine is running at steady state, the diesel combustion process still has some level of variation from cycle to cycle, even if engine load and all control inputs are fixed. This variation is a disturbance for the speed governor, and it could lead to less than optimal engine performance in terms of fuel economy, exhaust gas emission and noise emission. The most effective way to reduce this steady state combustion variation is by applying fuel path feedback control. The control action can be performed at a fixed frequency, or at a defined cycle event time. Intra-cycle control has the highest capacity to suppress the combustion deviation, as it measures the current cycle combustion performance and compensates for it within the same cycle using a very fast control response. Correct knowledge and a model of the disturbance sources and combustion variation patterns are essential in the design process of this intra-cycle control strategy.
Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

2016-04-05
2016-01-0617
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
X