Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Time-Resolved Measurements of Emission Transients By Mass Spectrometry

2000-10-16
2000-01-2952
High-speed diagnostics capable of accurately resolving emission transients are required to provide the most detailed understanding and optimization of active exhaust-emissions-treatment processes, such as NOX adsorbers. A portable, mass-spectrometry-based instrument with high temporal resolution, linear response and broad dynamic range is described. This instrument provides transient-concentration measurement capability for many relevant exhaust species including total NOX. In applications for evaluation of NOX-adsorber systems using heavy-duty diesel engines, the instrument revealed relevant emission transients not previously resolved with conventional analyzers. Specifically, the instrument resolved transient emissions associated with the competition between desorption and reduction rates. The temporal resolution of the instruments is sufficient to resolve kinetic rates of the NOX-adsorber system.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Technical Paper

The Chemistry, Properties, and HCCI Combustion Behavior of Refinery Streams Derived from Canadian Oil Sands Crude

2008-10-06
2008-01-2406
Diesel fuels derived from different types of crude oil can exhibit different chemistry while still meeting market requirements and specifications. Oil sands derived fuels typically contain a larger proportion of cycloparaffinic compounds, which result from the cracking and hydrotreating of bitumens in the crude. In the current study, 17 refinery streams consisting of finished fuels and process streams were obtained from a refinery using 100% oil sands derived crude oil. All samples except one met the ULSD standard of 15 ppm sulfur. The samples were characterized for properties and chemistry and run in a simple premixed HCCI engine using intake heating for combustion phasing control. Results indicate that the streams could be equally well characterized by chemistry or properties, and some simple correlations are presented. Cetane number was found to relate mainly to mono-aromatic content and the cycloparaffins did not appear to possess any unique diesel related chemical effects.
Technical Paper

Selective Catalytic Reduction of NOx Emissions from a 5.9 Liter Diesel Engine Using Ethanol as a Reductant

2003-10-27
2003-01-3244
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Technical Paper

Resolving EGR Distribution and Mixing

2002-10-21
2002-01-2882
A minimally invasive spatially resolved capillary inlet mass spectrometer has been used to quantify EGR/air mixing in a Cummins V-8 medium-duty diesel engine. Two EGR-system hardware designs were evaluated in terms of EGR-air mixing at the intake manifold inlet and port-to-port EGR charge uniformity. Performance was assessed at four modalized-FTP engine conditions. One design is found to be considerably better, particularly at three of the four engine conditions. Specific questions such as the effect of maximizing mass air flow on EGR mixing, and if particular cylinders are EGR starved are investigated. The detailed performance characteristics suggest areas to focus improvement efforts, and serve as a foundation for identifying the non-uniformity EGR barriers and origins.
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
Technical Paper

Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

2005-05-11
2005-01-2200
Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were a 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NOx+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NOx emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NOx increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines.
Technical Paper

Rapid Deactivation of Lean-Burn Natural Gas Engine Exhaust Oxidation Catalysts

1996-10-01
961976
Methane emissions from lean-burn natural gas engines can be relatively high. As natural gas fueled vehicles become more prevalent, future regulations may restrict these emissions. Preliminary reports indicated that conventional, precious metal oxidation catalysts rapidly deactivate (in less than 50 hours) in lean-burn natural gas engine exhaust. This investigation is directed at quantifying this catalyst deactivation and understanding its cause. The results may also be relevant to oxidation of lean-burn propane and gasoline engine exhaust. A platinum/palladium on alumina catalyst and a palladium on alumina catalyst were aged in the exhaust of a lean-burn natural gas engine (Cummins B5.9G). The engine was fueled with compressed natural gas. Catalyst aging was accomplished through a series of steady state cycles and heavy-duty transient tests (CFR 40 Part 86 Subpart N) lasting 10 hours. Hydrocarbons in the exhaust were speciated by gas chromatography.
Technical Paper

Particulate Matter and Aldehyde Emissions from Idling Heavy-Duty Diesel Trucks

2003-03-03
2003-01-0289
As part of a multi-agency study concerning emissions and fuel consumption from heavy-duty diesel truck idling, Oak Ridge National Laboratory personnel measured CO, HC, NOx, CO2, O2, particulate matter (PM), aldehyde and ketone emissions from truck idle exhaust. Two methods of quantifying PM were employed: conventional filters and a Tapered Element Oscillating Microbalance (TEOM). A partial flow micro-dilution tunnel was used to dilute the sampled exhaust to make the PM and aldehyde measurements. The work was performed at the U.S. Army's Aberdeen Test Center's (ATC) climate controlled chamber. ATC performed 37 tests on five class-8 trucks (model years ranging from 1992 to 2001). One was equipped with an 11 hp diesel auxiliary power unit (APU), and another with a diesel direct-fired heater (DFH). The APU powers electrical accessories, heating, and air conditioning, whereas a DFH heats the cab in cold weather. Both devices offer an alternative to extended truck-engine idling.
Technical Paper

Partial Oxidation Products and other Hydrocarbon Species in Diesel HCCI Exhaust

2005-10-24
2005-01-3737
A single cylinder engine was operated in HCCI mode with diesel-range fuels, spanning a range in cetane number (CN) from 34 to 62. In addition to measurements of standard gaseous emissions (CO, HC, and NOx), multiple sampling and analysis techniques were used to identify and measure the individual exhaust HC species including an array of oxygenated compounds. A new analytical method, using liquid chromatography (LC) with electrospray ionization-mass spectrometry (ESI-MS) in tandem with ultraviolet (UV) detection, was developed to analyze the longer chain aldehydes as well as carboxylic acids. Results showed an abundance of formic and butyric acid formation at or near the same concentration levels as formaldehyde and other aldehydes.
Journal Article

Mobile Source Air Toxics (MSATs) from High Efficiency Clean Combustion: Catalytic Exhaust Treatment Effects

2008-10-06
2008-01-2431
High Efficiency Clean Combustion (HECC) strategies such as homogenous charge compression ignition (HCCI) and pre-mixed charge compression ignition (PCCI) offer much promise for the reduction of NOx and PM from diesel engines. While delivering low PM and low NOx, these combustion modes often produce much higher levels of CO and HC than conventional diesel combustion modes. In addition, partially oxygenated species such as formaldehyde (an MSAT) and other aldehydes increase with HECC modes. The higher levels of CO and HCs have the potential to compromise the performance of the catalytic aftertreatment, specifically at low load operating points. As HECC strategies become incorporated into vehicle calibrations, manufacturers need to avoid producing MSATs in higher quantities than found in conventional combustion modes. This paper describes research on two different HECC strategies, HCCI and PCCI.
Technical Paper

Low Temperature Urea Decomposition and SCR Performance

2005-04-11
2005-01-1858
Urea-SCR systems are potentially a highly-effective means of NOX reduction for light-duty diesel vehicles. However, use of urea-SCR technologies at low temperatures presents unique technical challenges. This study was undertaken to provide more knowledge about low temperature urea decomposition and the resulting effects on SCR performance. Data are presented for experiments using two SCR catalysts of differing size with a light-duty diesel engine. Analyses of the NOX reduction efficiency, NH3 storage phenomena, and unregulated emissions are shown. Over production of NO2 by the oxidation catalyst is demonstrated to be problematic at 25,000 hr-1 space velocity for a range of temperatures. This leads to production of N2O by both SCR catalysts that is higher when urea is injected than when NH3 is injected.
Journal Article

Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

2016-04-05
2016-01-0705
Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions.
Journal Article

Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

2008-10-06
2008-01-2497
The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP.
Technical Paper

Influence of Fuel Aromatics Type on the Particulate Matter and NOx Emissions of a Heavy-Duty Diesel Engine

2000-06-19
2000-01-1856
The influence of fuel aromatics type on the particulate matter (PM) and NOx exhaust emissions of a heavy-duty, single-cylinder, DI diesel engine was investigated. Eight fuels were blended from conventional and oil sands crude oil sources to form five fuel pairs with similar densities but with different poly-aromatic (1.6 to 14.6%) or total aromatic (14.3 to 39.0%) levels. The engine was tuned to meet the U.S. EPA 1994 emission standards. An eight-mode, steady-state simulation of the U.S. EPA heavy-duty transient test procedure was followed. The experimental results show that there were no statistically significant differences in the PM and NOx emissions of the five fuel pairs after removing the fuel sulphur content effect on PM emissions. However, there was a definite trend towards higher NOx emissions as the fuel density, poly-aromatic and total aromatic levels of the test fuels increased.
Technical Paper

In-Use Emissions from Natural Gas Fueled Heavy-Duty Vehicles

1999-05-03
1999-01-1507
The objective of the work described here is to test the performance of closed-loop controlled, heavy-duty CNG engines in-use, on fuels of different methane content; and to compare their performance with similar diesel vehicles. Performance is measured in terms of pollutant emissions, fuel economy, and driveability. To achieve this objective, three buses powered by closed-loop controlled, dedicated natural gas engines were tested on the heavy-duty chassis dynamometer facility at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Emissions of regulated pollutants (CO, NOx, PM, and THC or NMHC), as well as emissions of alde-hydes for some vehicles, are reported. Two fuels were employed: a high methane fuel (90%) and a low methane fuel (85%). It was found that the NOx, CO, and PM emissions for a given cycle and vehicle are essentially constant for different methane content fuels.
Technical Paper

Implications of Particulate and Precursor Compounds Formed During High-Efficiency Clean Combustion in a Diesel Engine

2005-10-24
2005-01-3844
Advanced diesel combustion modes offer the promise of reduced engine-out particulate and nitrogen oxide emissions, thereby reducing the demand on post-combustion emission control devices. In this activity, a light-duty diesel engine was operated in conventional and advanced combustion modes. The advanced combustion modes investigated correspond to both clean (i.e., low PM and low NOX) and clean efficient combustion. The low-NOX, low-PM mode is considered an intermediate condition and the low-NOX, low-PM efficient mode is referred to as high efficiency clean combustion (HECC). Particulate and gaseous emissions were analyzed during all of these experiments. The detailed exhaust chemistry analysis provided significant new information to improving our understanding of these modes as well as identifying potentially important unregulated emissions.
Journal Article

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

2009-06-15
2009-01-1790
Increasing interest in biofuels—specifically, biodiesel as a pathway to energy diversity and security—have necessitated the need for research on the performance and utilization of these fuels and fuel blends in current and future vehicle fleets. One critical research area is related to achieving a full understanding of the impact of biodiesel fuel blends on advanced emission control systems. In addition, the use of biodiesel fuel blends can degrade diesel engine oil performance and impact the oil drain interval requirements. There is limited information related to the impact of biodiesel fuel blends on oil dilution. This paper assesses the oil dilution impacts on an engine operating in conjunction with a diesel particle filter (DPF), oxides of nitrogen (NOx) storage, a selective catalytic reduction (SCR) emission control system, and a 20% biodiesel (soy-derived) fuel blend.
X