Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

Two-Color Combustion Visualization of Single and Split Injections in a Single-Cylinder Heavy-Duty D.I. Diesel Engine Using an Endoscope-Based Imaging System

1999-03-01
1999-01-1112
An experimental study of luminous combustion in a modern diesel engine was performed to investigate the effect of injection parameters on NOX and soot formation via flame temperature and soot KL factor measurements. The two-color technique was applied to 2-D soot luminosity images and area-averaged soot radiation signals to obtain spatially and temporally resolved flame temperature and soot KL factor. The imaging system used for this study was based on a wide-angle endoscope that was mounted in the cylinder head and allowed different views of the combustion chamber. The experiments were carried out on a single-cylinder 2.4 liter D.I. diesel engine equipped with an electronically controlled common-rail injection system. Operating conditions were 1600 rpm and 75% load. The two-color results confirm that retarding the injection timing causes lower flame temperatures and NOX emissions but increased soot formation, independent of injection strategy.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

The Use of Variable Geometry Sprays With Low Pressure Injection for Optimization of Diesel HCCI Engine Combustion

2005-04-11
2005-01-0148
A numerical study of the effects of injection parameters and operating conditions for diesel-fuel HCCI operation is presented with consideration of Variable Geometry Sprays (VGS). Methods of mixture preparation are explored that overcome one of the major problems in HCCI engine operation with diesel fuel and conventional direct injection systems, i.e., fuel loss due to wall impingement and the resulting unburned fuel. Low pressure injection of hollow cone sprays into the cylinder of a production engine with the spray cone angle changing during the injection period were simulated using the multi-dimensional KIVA-3V CFD code with detailed chemistry. Variation of the starting and ending spray angles, injection timing, initial cylinder pressure and temperature, swirl intensity, and compression ratio were explored. As a simplified case of VGS, two-pulse, hollow-cone sprays were also simulated.
Technical Paper

The Effects of NOx Addition on the Auto Ignition Behavior of Natural Gas under HCCI Conditions

2002-05-06
2002-01-1746
Controlling start of ignition in Homogenous Charge Compression Ignition (HCCI) engines remains a major challenge. Here we have investigated changes in intake charge composition and its effects on ignition delay for natural gas based HCCI engine operation. In particular, we have investigated the effects of small amounts of nitrogen dioxide (NO2) on operating characteristics. Previous research had shown that NOx presence might attenuate natural gas ignition. The hypothesized catalytic effect of NOx on methane ignition at HCCI conditions was experimentally confirmed in a custom built engine. The problem was further studied in both zero and multidimensional numerical engine simulations with detailed chemistry. The simulations were used to complete a reaction rate sensitivity analysis to elucidate the controlling chemistry, and further confirm that a significant shift in ignition phasing is produced with the addition of just several ppm by volume of NO2 or NOx (NO + NO2).
Technical Paper

The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation

1995-02-01
950278
An integrated numerical model has been developed for diesel engine computations based on the KIVA-II code. The model incorporates a modified RNG k-ε, turbulence model, a ‘wave’ breakup spray model, the Shell ignition model, the laminar-and-turbulent characteristic-time combustion model, a crevice flow model, a spray/wall impingement model that includes rebounding and breaking-up drops, and other improved submodels in the KIVA code. The model was validated and applied to model successfully different types of diesel engines under various operating conditions. These engines include a Caterpillar engine with different injection pressures at different injection timings, a small Tacom engine at different loads, and a Cummins engine modified by Sandia for optical experiments. Good levels of agreement in cylinder pressures and heat release rate data were obtained using the same computer model for all engine cases.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Technical Paper

Reducing Particulate and NOx Using Multiple Injections and EGR in a D.I. Diesel

1995-02-01
950217
An emissions and performance study was conducted to explore the effects of EGR and multiple injections on particulate, NOx, and BSFC. EGR is known to be effective at reducing NOx, but at high loads there is usually a large increase in particulate. Recent work has shown that multiple injections are effective at reducing particulate. Thus, it was of interest to examine the possibility of simultaneously reducing particulate and NOx with the combined use of EGR and multiple injections. The tests were conducted on a fully instrumented single cylinder version of the Caterpillar 3406 heavy duty truck engine. Tests were done at high load (75% of peak torque at 1600 RPM where EGR has been shown to produce unacceptable increases in particulate emissions. The fuel system used was an electronically controlled, common rail injector and supporting hardware. The fuel system was capable of up to four independent injections per cycle.
Technical Paper

Reducing Particulate and NOx Emissions by Using Multiple Injections in a Heavy Duty D.I. Diesel Engine

1994-03-01
940897
An experimental study has been completed which evaluated the effectiveness of using double, triple and rate shaped injections to simultaneously reduce particulate and NOx emissions. The experiments were done using a single cylinder version of a Caterpillar 3406 heavy duty D.I. diesel engine. The fuel system used was a common rail, electronically controlled injector that allowed flexibility in both the number and duration of injections per cycle. Injection timing was varied for each injection scheme to evaluate the particulate vs. NOx tradeoff and fuel consumption. Tests were done at 1600 rpm using engine load conditions of 25% and 75% of maximum torque. The results indicate that a double injection with a significantly long delay between injections reduced particulate by as much as a factor of three over a single injection at 75% load with no increase in NOx. Double injections with a smaller dwell gave less improvement in particulate and NOx at 75% load.
Technical Paper

Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels

2011-04-12
2011-01-0363
Engine experiments and multi-dimensional modeling were used to explore Reactivity Controlled Compression Ignition (RCCI) to realize highly-efficient combustion with near zero levels of NOx and PM. In-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injection of higher reactivity fuels was used to control combustion phasing and duration. In addition to injection and operating parameters, the study explored the effect of fuel properties by considering both gasoline-diesel dual-fuel operation, ethanol (E85)-diesel dual fuel operation, and a single fuel gasoline-gasoline+DTBP (di-tert butyl peroxide cetane improver). Remarkably, high gross indicated thermal efficiencies were achieved, reaching 59%, 56%, and 57% for E85-diesel, gasoline-diesel, and gasoline-gasoline+DTBP respectively.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

1993-09-01
932458
The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.
Technical Paper

Progress Towards Diesel Combustion Modeling

1995-10-01
952429
Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG k-ε turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented.
Technical Paper

Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine

2006-04-03
2006-01-0198
Sustainable PCI combustion was achieved in a light-duty diesel engine through the installation of a 120° spray angle nozzle and modeling-generated piston bowl geometry developed for compatibility with early start-of-injection timings. Experimental studies were conducted to determine favorable settings for boost pressure, SOI timing, and EGR rate at 2000 rev/min, 5 bar BMEP. An optimal SOI timing was discovered at 43° BTDC where soot and NOx emissions were reduced 89% and 86%, respectively. A 10% increase in fuel consumption was attributed to increased HC and CO emissions as well as non-optimal combustion phasing. Combustion noise was sufficiently attenuated through the use of high EGR rates. The maximum attainable load for PCI combustion was limited by the engine's peak cylinder pressure and cylinder pressure rise rate constraints.
Technical Paper

Predictions of Residual Gas Fraction in IC Engines

1996-10-01
962052
It is well known that the accuracy of simulations of combustion processes in diesel and spark ignited (SI) engines depends on the initial conditions within the cylinder at intake valve closure (IVC). Residual gas affects the engine combustion processes through its influence on charge mass, temperature and dilution. In SI engines, there is little oxygen in the residual gas, and thus the dilution effect on flame propagation is more significant than in compression ignited (CI) engines. However, in CI engines, the ignition delay depends strongly on the in-cylinder gas temperature, which is proportional to the gas temperature at IVC. Furthermore, ignition delay is significantly affected by how much oxygen is present, which is also partly determined by the residual gas fraction. Therefore, it is of extreme importance to determine residual gas concentrations accurately.
Technical Paper

Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines

2007-10-29
2007-01-4030
In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both conventional diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study.
Journal Article

Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion

2009-11-02
2009-01-2699
The effects of spray targeting on mixing, combustion, and pollutant formation under a low-load, late-injection, low-temperature combustion (LTC) diesel operating condition are investigated by optical engine measurements and multi-dimensional modeling. Three common spray-targeting strategies are examined: conventional piston-bowl-wall targeting (152° included angle); narrow-angle floor targeting (124° included angle); and wide-angle piston-bowl-lip targeting (160° included angle). Planar laser-induced fluorescence diagnostics in a heavy-duty direct-injection optical diesel engine provide two-dimensional images of fuel-vapor, low-temperature ignition (H2CO), high-temperature ignition (OH) and soot-formation species (PAH) to characterize the LTC combustion process.
Technical Paper

Non-Equilibrium Turbulence Considerations for Combustion Processes in the Simulation of DI Diesel Engines

2000-03-06
2000-01-0586
A correction for the turbulence dissipation, based on non-equilibrium turbulence considerations from rapid distortion theory, has been derived and implemented in combination with the RNG k - ε model in a KIVA-based code. This model correction has been tested and compared with the standard RNG k - ε model for the compression and the combustion phase of two heavy duty DI diesel engines. The turbulence behavior in the compression phase shows clear improvements over the standard RNG k - ε model computations. In particular, the macro length scale is consistent with the corresponding time scale and with the turbulent kinetic energy over the entire compression phase. The combustion computations have been performed with the characteristic time combustion model. With this dissipation correction no additional adjustments of the turbulent characteristic time model constant were necessary in order to match experimental cylinder pressures and heat release rates of the two engines.
Technical Paper

Multidimensional Modeling of Engine Combustion Chamber Surface Temperatures

1997-05-01
971593
A two-dimensional transient Heat Conduction in Components code (HCC) was successfully set up and extensively used to calculate the temperature field existing in real engine combustion chambers. The Saul'yev method, an explicit, unconditionally stable finite difference method, was used in the code. Consideration of the gasket between the cylinder wall and head, and the air gap between the piston and liner were included in the code. The realistic piston bowl shape was modeled with a grid transformation and piston movement was considered. The HCC code was used to calculate the wall temperature of an Isuzu ceramic engine and a Caterpillar heavy-duty diesel engine. The code was combined with the KIVA-II code in an iterative loop, in which the KIVA-II code provided the instantaneous local heat flux on the combustion chamber surfaces, and the HCC code computed the time-averaged wall temperature distribution on the surfaces.
Technical Paper

Modeling the Influence of Molecular Interactions on the Vaporization of Multi-component Fuel Sprays

2011-04-12
2011-01-0387
A vaporization model for realistic multi-component fuel sprays is described. The equilibrium at the interface between liquid droplets and the surrounding gas is obtained based on the UNIFAC method, which considers non-ideal molecular interactions that can greatly enhance or suppress the vaporization of the components in the system compared to predictions from ideal mixing using Raoult's Law, especially for polar fuels. The present results using the UNIFAC method are shown to be able to capture the azeotropic behaviors of polar molecule blends, such as mixtures of benzene and ethanol, benzene and iso-propanol, and ethanol and water [1]. Predicted distillation curves of mixtures of ethanol and multi-component gasoline surrogates are compared to those from experiments, and the model gives good improvements on predictions of the distillation curves for initial ethanol volume fractions ranging from 0% to 100%.
X