Refine Your Search




Search Results

Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Journal Article

Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to Investigate Dual-Fuel Engine Concepts

A multi-component fuel model is used to represent gasoline in computational fluid dynamics (CFD) simulations of a dual-fuel engine that combines premixed gasoline injection with diesel direct injection. The simulations employ detailed-kinetics mechanisms for both the gasoline and diesel surrogate fuels, through use of an advanced and efficient chemistry solver. The objective of this work is to elucidate kinetics effects of dual-fuel usage in Reactivity Controlled Compression Ignition (RCCI) combustion. The model is applied to simulate recent experiments on highly efficient RCCI engines. These engine experiments used a dual-fuel RCCI strategy with port-fuel-injection of gasoline and early-cycle, multiple injections of diesel fuel with a conventional diesel injector. The experiments showed that the US 2010 heavy-duty NO and soot emissions regulations were easily met without aftertreatment, while achieving greater than 50% net indicated thermal efficiency.
Journal Article

Transient RCCI Operation in a Light-Duty Multi-Cylinder Engine

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions, while maintaining high thermal efficiency. Previous RCCI steady-state performance studies provided a fundamental understanding of the RCCI combustion process in steady-state, single-cylinder and multi-cylinder engine tests. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions. In this study, a high-bandwidth, transient-capable engine test cell was used and multi-cylinder engine RCCI combustion is compared to CDC over a step load change from 1 to 4 bar BMEP at 1,500 rev/min. The engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and used the same ULSD for the CDC tests.
Technical Paper

The Use of Variable Geometry Sprays With Low Pressure Injection for Optimization of Diesel HCCI Engine Combustion

A numerical study of the effects of injection parameters and operating conditions for diesel-fuel HCCI operation is presented with consideration of Variable Geometry Sprays (VGS). Methods of mixture preparation are explored that overcome one of the major problems in HCCI engine operation with diesel fuel and conventional direct injection systems, i.e., fuel loss due to wall impingement and the resulting unburned fuel. Low pressure injection of hollow cone sprays into the cylinder of a production engine with the spray cone angle changing during the injection period were simulated using the multi-dimensional KIVA-3V CFD code with detailed chemistry. Variation of the starting and ending spray angles, injection timing, initial cylinder pressure and temperature, swirl intensity, and compression ratio were explored. As a simplified case of VGS, two-pulse, hollow-cone sprays were also simulated.
Technical Paper

The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D.I. Diesel Engine

An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE) was used to study diesel combustion. The SCOTE retains the port, combustion chamber, and injection geometry of the production six cylinder, 373 kW (500 hp) 3406E heavy-duty truck engine. The engine was equipped with an electronic unit injector and an electronically controlled common rail injector that is capable of multiple injections. An emissions investigation was carried out using a six-mode cycle simulation of the EPA Federal Transient Test Procedure. The results show that the SCOTE meets current EPA mandated emissions levels, despite the higher internal friction imposed by the single-cylinder configuration. NOx versus particulate trade-off curves were generated over a range of injection timings for each mode and results of heat release calculations were examined, giving insight into combustion phenomena in current “state of the art” heavy-duty diesel engines.
Technical Paper

The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped with a Common Rail Injection System

To overcome the trade-off between NOx and particulate emissions for future diesel vehicles and engines it is necessary to seek methods to lower pollutant emissions. The desired simultaneous improvement in fuel efficiency for future DI (Direct Injection) diesels is also a difficult challenge due to the combustion modifications that will be required to meet the exhaust emission mandates. This study demonstrates the emission reduction capability of split injections, EGR (Exhaust Gas Recirculation), and other parameters on a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system using an RSM (Response Surface Method) optimization method. The optimizations were conducted at 1757 rev/min, 45% load. Six factors were considered for the optimization, namely the EGR rate, SOI (Start of Injection), intake boost pressure, and injection pressure, the percentage of fuel in the first injection, and the dwell between injections.
Technical Paper

The Effects of NOx Addition on the Auto Ignition Behavior of Natural Gas under HCCI Conditions

Controlling start of ignition in Homogenous Charge Compression Ignition (HCCI) engines remains a major challenge. Here we have investigated changes in intake charge composition and its effects on ignition delay for natural gas based HCCI engine operation. In particular, we have investigated the effects of small amounts of nitrogen dioxide (NO2) on operating characteristics. Previous research had shown that NOx presence might attenuate natural gas ignition. The hypothesized catalytic effect of NOx on methane ignition at HCCI conditions was experimentally confirmed in a custom built engine. The problem was further studied in both zero and multidimensional numerical engine simulations with detailed chemistry. The simulations were used to complete a reaction rate sensitivity analysis to elucidate the controlling chemistry, and further confirm that a significant shift in ignition phasing is produced with the addition of just several ppm by volume of NO2 or NOx (NO + NO2).
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

Surrogate Diesel Fuel Models for Low Temperature Combustion

Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Technical Paper

Stoichiometric Combustion in a HSDI Diesel Engine to Allow Use of a Three-way Exhaust Catalyst

The objectives of this study were 1) to evaluate the characteristics of rich diesel combustion near the stoichiometric operating condition, 2) to explore the possibility of stoichiometric operation of a diesel engine in order to allow use of a three-way exhaust after-treatment catalyst, and 3) to achieve practical operation ranges with acceptable fuel economy impacts. Boost pressure, EGR rate, intake air temperature, fuel mass injected, and injection timing variations were investigated to evaluate diesel stoichiometric combustion characteristics in a single-cylinder high-speed direct injection (HSDI) diesel engine. Stoichiometric operation in the Premixed Charge Compression Ignition (PCCI) combustion regime and standard diesel combustion were examined to investigate the characteristics of rich combustion. The results indicate that diesel stoichiometric operation can be achieved with minor fuel economy and soot impact.
Technical Paper

Spray Targeting to Minimize Soot and CO Formation in Premixed Charge Compression Ignition (PCCI) Combustion with a HSDI Diesel Engine

The effect of spray targeting on exhaust emissions, especially soot and carbon monoxide (CO) formation, were investigated in a single-cylinder, high-speed, direct-injection (HSDI) diesel engine. The spray targeting was examined by sweeping the start-of-injection (SOI) timing with several nozzles which had different spray angles ranging from 50° to 154°. The tests were organized to monitor the emissions in Premixed Charge Compression Ignition (PCCI) combustion by introducing high levels of EGR (55%) with a relatively low compression ratio (16.0) and an open-crater type piston bowl. The study showed that there were optimum targeting spots on the piston bowl with respect to soot and CO formation, while nitric oxide (NOx) formation was not affected by the targeting. The soot and CO production were minimized when the spray was targeted at the edge of the piston bowl near the squish zone, regardless of the spray angle.
Technical Paper

Six-Mode Cycle Evaluation of the Effect of EGR and Multiple Injections on Particulate and NOx Emissions from a D.I. Diesel Engine

An emissions and performance study was conducted to explore the effects of exhaust gas recirculation (EGR) and multiple injections on the emission of oxides of nitrogen (NOx), particulate emissions, and brake specific fuel consumption (BSFC) over a wide range of engine operating conditions. The tests were conducted on an instrumented single cylinder version of the Caterpillar 3400 series heavy duty Diesel engine. Data was taken at 1600 rev/min, and 75% load, and also at operating conditions taken from a 6-mode simulation of the federal transient test procedure (FTP). The fuel system used was an electronically controlled, common rail injector and supporting hardware. The fuel system was capable of as many as four independent injections per combustion event at pressures from 20 to 120MPa.
Technical Paper

Simultaneous Reduction of Engine Emissions and Fuel Consumption Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling

A computational optimization study is performed for a heavy-duty direct-injection diesel engine using the recently developed KIVA-GA computer code. KIVA-GA performs full cycle engine simulations within the framework of a Genetic Algorithm (GA) global optimization code. Design fitness is determined using a one-dimensional gas -dynamics code for calculation of the gas exchange process, and a three-dimensional CFD code based on KIVA-3V for spray, combustion and emissions formation. The performance of the present Genetic Algorithm is demonstrated using a test problem with a multi-modal analytic function in which the optimum is known a priori. The KIVA-GA methodology is next used to simultaneously investigate the effects of six engine input parameters on emissions and performance for a high speed, medium load operating point for which baseline experimental validation data is available.
Technical Paper

Reduction of Emissions and Fuel Consumption in a 2-Stroke Direct Injection Engine with Multidimensional Modeling and an Evolutionary Search Technique

An optimization study combining multidimensional CFD modeling and a global, evolutionary search technique known as the Genetic Algorithm has been carried out. The subject of this study was a 2-stroke, spark-ignited, direct-injection, single-cylinder research engine (SCRE). The goal of the study was to optimize the part load operating parameters of the engine in order to achieve the lowest possible emissions, improved fuel economy, and reduced wall heat transfer. Parameters subject to permutation in this study were the start-of-injection (SOI) timing, injection duration, spark timing, fuel injection angle, dwell between injections, and the percentage of fuel mass in the first injection pulse. The study was comprised of three cases. All simulations were for a part load, intermediate-speed condition representing a transition operating regime between stratified charge and homogeneous charge operation.
Technical Paper

Reducing Particulate and NOx Emissions by Using Multiple Injections in a Heavy Duty D.I. Diesel Engine

An experimental study has been completed which evaluated the effectiveness of using double, triple and rate shaped injections to simultaneously reduce particulate and NOx emissions. The experiments were done using a single cylinder version of a Caterpillar 3406 heavy duty D.I. diesel engine. The fuel system used was a common rail, electronically controlled injector that allowed flexibility in both the number and duration of injections per cycle. Injection timing was varied for each injection scheme to evaluate the particulate vs. NOx tradeoff and fuel consumption. Tests were done at 1600 rpm using engine load conditions of 25% and 75% of maximum torque. The results indicate that a double injection with a significantly long delay between injections reduced particulate by as much as a factor of three over a single injection at 75% load with no increase in NOx. Double injections with a smaller dwell gave less improvement in particulate and NOx at 75% load.
Technical Paper

Reactivity Controlled Compression Ignition (RCCI) in a Single-Cylinder Air-Cooled HSDI Diesel Engine

An experimental investigation of Reactivity Controlled Compression Ignition (RCCI) combustion was conducted in a small single-cylinder HSDI diesel generator engine and compared to standard Direct Injection (DI) diesel combustion to assess the validity of this combustion strategy for high efficiency operation and simultaneous NOx and soot emission reduction in cylinder for this type of engine. A Yanmar L70AE engine was modified from its unit injector mechanical fuel system to operate with a more flexible, electrically controlled common rail DI fuel system in order to achieve the high level of injection event control required for RCCI combustion. RCCI combustion was realized using split, early DI diesel fuel and Port Fuel Injected (PFI) gasoline for 25%, 50% and 75% engine loads (~3, 4.3 and 5.5 bar IMEPn). The effects of intake air temperature, DI injection timing and combustion phasing on engine efficiency, emissions and combustion stability were explored.
Technical Paper

Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels

Engine experiments and multi-dimensional modeling were used to explore Reactivity Controlled Compression Ignition (RCCI) to realize highly-efficient combustion with near zero levels of NOx and PM. In-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injection of higher reactivity fuels was used to control combustion phasing and duration. In addition to injection and operating parameters, the study explored the effect of fuel properties by considering both gasoline-diesel dual-fuel operation, ethanol (E85)-diesel dual fuel operation, and a single fuel gasoline-gasoline+DTBP (di-tert butyl peroxide cetane improver). Remarkably, high gross indicated thermal efficiencies were achieved, reaching 59%, 56%, and 57% for E85-diesel, gasoline-diesel, and gasoline-gasoline+DTBP respectively.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.