Refine Your Search

Topic

Search Results

Technical Paper

Three-Dimensional Numerical Simulation of Flame Propagation in Spark Ignition Engines

1993-10-01
932713
Multi-dimensional numerical simulation of the combustion process in spark ignition engines were performed using the Coherent Flame Model (CFM) which is based on the flamelet assumption. The CFM uses a balance equation for the flame surface area to simulate flame surface advection, diffusion, production and destruction in a turbulent reacting flow. There are two model constants in CFM, one associated with the modeling of flame surface production and the other with the modeling of flame surface destruction. Previous experimental results on two test engines charged with propane-air mixtures were used to compare with the computations for different engine speeds, loads, equivalence ratios and spark plug locations. Predicted engine cylinder pressure histories agree well with the experimental results for various operating conditions after the model constants were calibrated against a reference operating condition.
Technical Paper

The Texas Project, Part 4 - Final Results: Emissions and Fuel Economy of CNG and LPG Conversions of Light-Duty Vehicles

1998-10-19
982446
The Texas Project was a multi-year study of aftermarket conversions of a variety of light-duty vehicles to CNG or LPG. Emissions and fuel economy when using these fuels are compared to the results for the same vehicles operating on certification gasoline and Federal Phase 1 RFG. Since 1993, 1,040 tests were conducted on 10 models, totally 86 light-duty vehicles. The potential for each vehicle model/kit combination to attain LEV certification was assessed. Also, comparisons of emissions and fuel economy between converted vehicles when operating on gasoline and nominally identical un-converted gasoline control vehicles were analyzed. Additional evaluations were performed for a subfleet that was subjected to exhaust speciations for operation over the Federal Test Procedure cycle and also for off-cycle tests.
Technical Paper

The Effect of In-Cylinder Wall Wetting Location on the HC Emissions from SI Engines

1999-03-01
1999-01-0502
The effect of combustion chamber wall-wetting on the emissions of unburned and partially-burned hydrocarbons (HCs) from gasoline-fueled SI engines was investigated experimentally. A spark-plug mounted directional injection probe was developed to study the fate of liquid fuel which impinges on different surfaces of the combustion chamber, and to quantify its contribution to the HC emissions from direct-injected (DI) and port-fuel injected (PFI) engines. With this probe, a controlled amount of liquid fuel was deposited on a given location within the combustion chamber at a desired crank angle while the engine was operated on pre-mixed LPG. Thus, with this technique, the HC emissions due to in-cylinder wall wetting were studied independently of all other HC sources. Results from these tests show that the location where liquid fuel impinges on the combustion chamber has a very important effect on the resulting HC emissions.
Technical Paper

Particulate Characterization of a DISI Research Engine using a Nephelometer and In-Cylinder Visualization

2001-05-07
2001-01-1976
A nephelometer system was developed to characterize engine particulate emissions from DISI engines. Results were correlated with images showing the location and history of particulates in the cylinder of an optical engine. The nephelometer's operation is based upon the dependence of scattered laser light on particulate size from a flow sampled from the exhaust of an engine. The nephelometer simultaneously measured the scattered light from angles of 20° to 160° from the forward scattering direction in 4° increments. The angular scattering measurements were then compared with calculations using a Mie scattering code to infer information regarding particulate size. Measurements of particulate mass were made based upon a correlation developed between the scattered light intensity and particulate mass samples trapped in a 0.2-micron filter. Measurements were made in a direct injection single-cylinder spark ignition research engine having a transparent quartz cylinder.
Technical Paper

Mixture Preparation During Cranking in a Port-Injected 4-Valve SI Engine

1997-10-01
972982
This paper presents the results of an experimental investigation of the fuel-air mixing process in a port-fuel-injected, 4-valve, spark-ignited engine that was motored to simulate cold cranking and start-up conditions. An infrared fiber-optic instrumented spark plug probe was used to measure the local, crank angle resolved, fuel concentration in the vicinity of the spark gap of a single-cylinder research engine with a production head and fuel injector. The crank-angle resolved fuel concentrations were compared for various injection timings including open-intake-valve (OIV) and closed-intake-valve (CIV) injection, using federal certification gasoline. In addition, the effects of speed, intake manifold pressure, and injected fuel mass were examined.
Technical Paper

Liquid Film Evaporation Off the Piston of a Direct Injection Gasoline Engine

2001-03-05
2001-01-1204
An optical access engine was used to image the liquid film evaporation off the piston of a simulated direct injected gasoline engine. A directional injector probe was used to inject liquid fuel (gasoline, i-octane and n-pentane) directly onto the piston of an engine primarily fueled on propane. The engine was run at idle conditions (750 RPM and closed throttle) and at the Ford World Wide Mapping Point (1500 RPM and 262 kPa BMEP). Mie scattering images show the liquid exiting the injector probe as a stream and directly impacting the piston top. Schlieren imaging was used to show the fuel vaporizing off the piston top late in the expansion stroke and during the exhaust stroke. Previous emissions tests showed that the presence of liquid fuel on in-cylinder surfaces increases engine-out hydrocarbon emissions.
Technical Paper

In-Cylinder Fuel Transport During the First Cranking Cycles in a Port Injected 4-Valve Engine

1997-02-24
970043
Fuel transport was visualized within the cylinder of a port injected four-valve SI engine having a transparent cylinder liner. Measurements were made while motoring at 250 rpm to simulate cranking conditions prior to the first firing cycle, and at 750 rpm to examine the effects of engine speed. A production GM Quad-4 cylinder head was used, and the stock single-jet port fuel injector was used to inject indolene. A digital camera was used to capture back-lighted images of cylinder wall wetting for open and closed intake valve injection. In addition, two-dimensional planar imaging of Mie scattering from the indolene fuel droplets was used to characterize the fuel droplet distribution as a function of crank angle for open and closed intake valve injection. LDV was used to measure the droplet and air velocities near the intake valves during fuel induction. It was found that with open-valve injection a large fraction of the fuel impinged on the cylinder wall opposite the intake valves.
Technical Paper

Improving Heavy-Duty Engine Efficiency and Durability: The Rotating Liner Engine

2005-04-11
2005-01-1653
The Rotating Linear Engine (RLE) derives improved fuel efficiency and decreased maintenance costs via a unique lubrication design, which decreases piston assembly friction and the associated wear for heavy-duty natural gas and diesel engines. The piston ring friction exhibited on current engines accounts for 1% of total US energy consumption. The RLE is expected to reduce this friction by 50-70%, an expectation supported by hot motoring and tear-down tests on the UT single cylinder RLE prototype. Current engines have stationary liners where the oil film thins near the ends of the stroke, resulting in metal-to-metal contact. This metal-to-metal contact is the major source of both engine friction and wear, especially at high load. The RLE maintains an oil film between the piston rings and liner throughout the piston stroke due to liner rotation. This assumption has also been confirmed by recent testing of the single cylinder RLE prototype.
Technical Paper

Improved Passage Design for a Spark Plug Mounted Pressure Transducer

2007-04-16
2007-01-0652
Combustion chamber pressure measurement in engines via a passage is an old technique that is still widely used in engine research. This paper presents improved passage designs for an off-set electrode spark plug designed to accept a pressure transducer. The spark plug studied was the Champion model 304-063A. Two acoustic models were developed to compute the resonance characteristics. The new designs have a resonance frequency in a range higher than the fundamental frequency expected from knock so that the signal can be lowpass filtered to remove the resonance and not interfere with pressure signal components associated with combustion phenomena. Engine experiments verified the spark plug resonance behavior. For the baseline engine operating condition approximately 50 of 100 cycles had visible passage resonance in the measured pressure traces, at an average frequency of 8.03 kHz.
Technical Paper

Further Experiments on the Effects of In-Cylinder Wall Wetting on HC Emissions from Direct Injection Gasoline Engines

1999-10-25
1999-01-3661
A recently developed in-cylinder fuel injection probe was used to deposit a small amount of liquid fuel on various surfaces within the combustion chamber of a 4-valve engine that was operating predominately on liquefied petroleum gas (LPG). A fast flame ionization detector (FFID) was used to examine the engine-out emissions of unburned and partially-burned hydrocarbons (HCs). Injector shut-off was used to examine the rate of liquid fuel evaporation. The purpose of these experiments was to provide insights into the HC formation mechanism due to in-cylinder wall wetting. The variables investigated were the effects of engine operating conditions, coolant temperature, in-cylinder wetting location, and the amount of liquid wall wetting. The results of the steady state tests show that in-cylinder wall wetting is an important source of HC emissions both at idle and at a part load, cruise-type condition. The effects of wetting location present the same trend for idle and part load conditions.
Technical Paper

Further Development of an Electronic Particulate Matter Sensor and Its Application to Diesel Engine Transients

2008-04-14
2008-01-1065
This paper presents the latest developments in the design and performance of an electronic particulate matter (PM) sensor developed at The University of Texas at Austin (UT) and suitable, with further development, for applications in active engine control of PM emissions. The sensor detects the carbonaceous mass component of PM in the exhaust and has a time-resolution less than 20 (ms), allowing PM levels to be quantified for engine transients. Sample measurements made with the sensor in the exhaust of a single-cylinder light duty diesel engine are presented for both steady-state and transient operations: a steady-state correlation with gravimetric filter measurements is presented, and the sensor response to rapid increases in PM emission during engine transients is shown for several different tip-in (momentary increases in fuel delivery) conditions.
Technical Paper

Fuel-Spray/Charge-Motion Interaction within the Cylinder of a Direct-Injected, 4-Valve, SI Engine

1998-02-23
980155
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The interaction between the high-pressure fuel jet and the intake air-flow was observed. Laser-sheet droplet imaging was used to visualize the in-cylinder droplet distributions, and a single-component LDV system was used to measure in-cylinder velocities. The fuel spray was visualized with the engine motored at 1500 and 750 rpm, and with the engine stopped. It was observed that the shape of the fuel spray was distorted by the in-cylinder air motion generated by the intake air flow, and that this effect became more pronounced with increasing engine speed. Velocity measurements were made at five locations on the symmetry plane of the cylinder, with the engine motored at 750 rpm. Comparison of these measurements with, and without, injection revealed that the in-cylinder charge motion was significantly altered by the injection event.
Technical Paper

Fuel Spray Dynamics and Fuel Vapor Concentration Near the Spark Plug in a Direct-Injected 4-Valve SI Engine

1999-03-01
1999-01-0497
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The engine had a transparent cylinder liner that allowed the fuel spray to be imaged using laser sheet Mie scattering. A fiber optic probe was used to measure the vapor phase fuel concentration history at the spark plug location between the two intake valves. The fuel injector was located on the cylinder axis. Two flow fields were examined; the stock configuration (tumble index 1.4) and a high tumble (tumble index 3.4) case created using shrouded intake valves. The fuel spray was visualized with the engine motored at 750 and 1500 RPM. Start of injection timings of 90°, 180° and 270° after TDC of intake were examined. The imaging showed that the fuel jet is greatly distorted for the high tumble condition, particularly at higher engine speeds. The tumble was large enough to cause significant cylinder wall wetting under the exhaust valves for some conditions.
Technical Paper

Engine Friction Reduction Through Liner Rotation

2005-04-11
2005-01-1652
Cylinder liner rotation (Rotating Liner Engine, RLE) is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of the RLE is to reduce or eliminate the occurrence of boundary and mixed lubrication friction in the piston assembly (specifically, the rings and skirt). This paper reports the results of experiments to quantify the potential of the RLE. A 2.3 L GM Quad 4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. To allow examination of the effects of liner rotational speed, the rotating liner is driven by an electric motor. A torque cell in the motor output shaft is used to measure the torque required to rotate the liner. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, hot motoring tear-down tests were used to measure the contribution of each engine component to the total friction torque.
Technical Paper

Effects of Swirl and Tumble on In-Cylinder Fuel Distribution in a Central Injected DISI Engine

2000-03-06
2000-01-0533
The effect of the in-cylinder bulk flow on fuel distributions in the cylinder of a motored direct-injection S.I. engine was measured. Five different bulk flows were induced through combinations of shrouded and unshrouded valves, and port deactivation: stock, high tumble, reverse tumble, swirl, and swirl/tumble. Planar Mie scattering was used to observe the fuel spray movement in the centerline plane of a transparent cylinder engine. A fiber optic instrumented spark plug was used to measure the resulting cycle-resolved equivalence ratio in the vicinity of the spark plug. The four-valve engine had the injector located on the cylinder axis; the fiber optic probe was located between the intake valves. Injection timings of 90, 180, and 270 degrees after TDC were examined. Measurements were made at 750 and 1500 rpm with certification gasoline at open throttle conditions. From the images it was found that the type and strength of the bulk flow greatly affected the spray behavior.
Technical Paper

Effects of Fuel Parameters on FTP Emissions of a 1998 Toyota with a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1907
The effects of fuel properties on the emissions of a production vehicle with a gasoline direct injection engine operating over the Federal Test Procedure (FTP) cycle were investigated. The vehicle used was a 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine. Engine-out and tailpipe FTP emissions for six fuels and a California Phase 2 RFG reference fuel are presented. Four of the test fuels were blended from refinery components to meet specified distillation profiles. The remaining test fuels were iso-octane and toluene, an iso-alkane and an aromatic with essentially the same boiling point (at atmospheric pressure) that is near the T50 point for the blended fuels. Statistically significant effects, at the 95% confidence level, of the fuels on tailpipe emissions were found. Correlations were sought between the properties of the five blends and the Emissions Indices for engine-out hydrocarbons and NOx and for tailpipe particulates.
Technical Paper

Effect of Fuel Parameters on Speciated Hydrocarbon Emissions from a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1908
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested over the Federal Test Procedure (FTP) driving cycle. Speciated engine-out hydrocarbon emissions were measured. Seven fuels were used for these tests: five blended fuels and two pure hydrocarbon fuels. One of the blended fuels was CARB Phase 2 reformulated gasoline which was used as the reference fuel. The remaining four blended fuels were made from refinery components to meet specified distillation profiles. The pure hydrocarbon fuels were iso-octane and toluene - an alkane and an aromatic with essentially identical boiling points. The five blended fuels can be grouped to examine the effects of fuel volatility and MTBE. Additionally, correlations were sought between the fuel properties and the Specific Reactivity, the exhaust “toxics”, and the pass-through of unburned fuel species.
Technical Paper

Development and Application of an Improved Ring Pack Model for Hydrocarbon Emissions Studies

1996-10-01
961966
Because only the unburned gases in the crevices can contribute to hydrocarbon emissions, a model was developed that can be used to determine the temporal and spatial histories of both burned gas and unburned gas flow into and out of the piston-liner crevices. The burned fraction in the top-land is primarily a function of engine design. Burned gases continue to get packed into the inter-ring volume until well after the end of combustion and the unburned fuel returned to the chamber from this source depends upon both the position of the top ring end gap relative to the spark plug and of the relative positions of the end gaps of the compression rings with respect to each other. Because the rings rotate, and because the fuel that returns to the chamber from the inter-ring crevice dominates the sources between BDC and IVO when conditions are unfavorable to in-cylinder oxidation, these represent two sources of variability in the HC emissions.
Technical Paper

Design Details of the Compression Ignition Rotating Liner Engine. Reducing Piston Assembly Friction and Ring/Liner Wear in Heavy-Duty Diesel Engines

2012-09-24
2012-01-1963
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
Technical Paper

Condensation of Fuel on Combustion Chamber Surfaces as a Mechanism for Increased HC Emissions from SI Engines During Cold Start

1997-10-01
972884
Condensation of fuel vapor on the cold surfaces within the combustion chamber is investigated as a possible mechanism for increased HC emissions from SI engines during cold start. A one-dimensional, transient, mass diffusion analysis is used to examine the condensation of single-species fuels on the surfaces of the combustion chamber as the pressure within the cylinder rises during compression and combustion, and re-vaporization during expansion, blowdown, and exhaust. The effects of wall temperature, fuel volatility, and engine load and speed on this mechanism are also discussed. This analysis shows that low-volatility fuel components can condense on the surfaces of the combustion chamber when the surface temperatures are sufficiently low. This condensed fuel may re-vaporize during the power and exhaust strokes, or it may remain in the combustion chamber until surface temperatures rise, perhaps tens of seconds later.
X